Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Biosynthesis of ROE-AgNPs with Its Conjugation to Cefuroxime and Determination of Conjugation Efficiency
2.3. Characterization of ROE-AgNPs and Cefuroxime-ROE-AgNPs
2.3.1. UV-Visible Spectrum
2.3.2. Transmission Electron Microscopy
2.3.3. X-ray Diffraction Analysis
2.3.4. Fourier Transforms Infrared Analysis (FT-IR)
2.4. Preparation of Specimens and Grouping
2.5. Determination of Drug Release
2.6. Bacteria and Growth Conditions
2.7. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Cefuroxime, ROE-AgNPs, or Cefuroxime-ROE-AgNPs
2.8. Assessing the Antimicrobial Activity
2.9. Determination of Antibacterial Rate Using Colony-Forming Units (CFU)
2.10. Formation of Biofilm and Anti-Biofilm Activity of BIOD Material
2.11. Statistical Analysis
3. Results
3.1. Biosynthesis of ROE-AgNPs with Its Conjugation to Cefuroxime and Determination of Conjugation Efficiency
3.2. Characterization of ROE-AgNPs and Cefuroxime-ROE-AgNPs
3.2.1. UV–Vis Spectroscopy of ROE-AgNPs
3.2.2. Transmission Electron Microscopy
3.2.3. X-ray Diffraction Analysis
3.2.4. Fourier Transforms Infrared Analysis
3.3. Determination of Drug Release
3.4. MIC and MBC of Cefuroxime, ROE-AgNPs, or Cefuroxime-ROE-AgNPs
3.5. Assessing the Antimicrobial Activity
3.6. Determination of Antibacterial Rate Using Colony-Forming Units (CFU)
3.7. Formation of Biofilm and Anti-Biofilm Activity of BIOD Material
4. Discussion
4.1. In-Vitro Drug Release
4.2. Antimicrobial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hui, S.H.H.; Ariffin, Z.; Alam, M.K. In-Vitro Study of Antibacterial Properties of Endodontic Sealers and Medications towards Streptococcus mutans and Enterococcus faecalis. Int. Med. J. 1994, 20, 493–495. [Google Scholar]
- Jung, Y.; Yoon, J.-Y.; Patel, K.D.; Lee, H.-H.; Ma, L.; Kim, J.; Lee, J.-H.; Shin, J. Biological Effects of Tricalcium Silicate Nanoparticle-Containing Cement on Stem Cells from Human Exfoliated Deciduous Teeth. Nanomaterials 2020, 10, 1373. [Google Scholar] [CrossRef]
- Attik, G.N.; Villat, C.; Hallay, F.; Pradelle-Plasse, N.; Bonnet, H.; Moreau, K. In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: BiodentineTM versus MTA (1). Int. Endod. J. 2014, 47, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Zanini, M.; Sautier, J.M.; Berdal, A.; Simon, S. Biodentine Induces Immortalized Murine Pulp Cell Differentiation into Odontoblast-like Cells and Stimulates Biomineralization. J. Endod. 2012, 38, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Niranjani, K.; Prasad, M.G.; Vasa, A.A.; Divya, G.; Thakur, M.S.; Saujanya, K. Clinical evaluation of success of primary teeth pulpotomy using mineral trioxide aggregate®, laser and BiodentineTM—An in vivo study. J. Clin. Diagn. Res. 2015, 9, ZC35–ZC37. [Google Scholar] [PubMed]
- Tran, X.V.; Gorin, C.; Willig, C.; Baroukh, B.; Pellat, B.; Decup, F. Effect of a calcium-silicate based restorative cement on pulp repair. J. Dent. Res. 2012, 91, 1166–1171. [Google Scholar] [CrossRef]
- Hashem, D.; Mannocci, F.; Patel, S.; Manoharan, A.; Brown, J.E.; Watson, T.F.; Banerjee, A. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: A randomized controlled clinical trial. J. Dent. Res. 2015, 94, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Rajasekharan, S.; Martens, L.C.; Vandenbulcke, J.; Jacquet, W.; Bottenberg, P.; Cauwels, R. Efficacy of three different pulpotomy agents in primary molars: A randomized control trial. Int. Endod. J. 2017, 50, 215–228. [Google Scholar] [CrossRef]
- Nikhil, V.; Madan, M.; Suri, N.; Agarwal, C. Effect of addition of 2% chlorhexidine or 10% doxycycline on antimicrobial activity of biodentine. J. Conserv. Dent. 2014, 17, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Oberoi, S.S.; Dhingra, C.; Sharma, G.; Sardana, D. Antibiotics in dental practice: How justifed are we. Int. Dent. J. 2015, 65, 4–10. [Google Scholar] [CrossRef]
- Panigrahi, A.K. Relationship between Inventory Management and Profitability: An Empirical Analysis of Indian Cement Companies. Asia Pac. J. Mark. Manag. Rev. 2013, 2, 107–120. [Google Scholar]
- Abo-Shama, U.H.; El-Gendy, H.; Mousa, W.S.; A Hamouda, R.; E Yousuf, W.; Hetta, H.F.; E Abdeen, E. Synergistic and Antagonistic Effects of Metal Nanoparticles in Combination with Antibiotics Against Some Reference Strains of Pathogenic Microorganisms. Infect. Drug Resist. 2020, 13, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Nafady, A.; Sherazi, S.T.; Shah, M.R.; Alsalme, A.; Kalhoro, M.S.; Mahesar, S.A.; Siddiqui, S. Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid. RSC Adv. 2016, 6, 82882–82889. [Google Scholar] [CrossRef]
- Hameed, A.; Fatima, S.; Rahman, F.U.; Yoon, T.-H.; Azam, A.; Khan, S.; Khan, A.; Islam, N.U. Synergistic enzyme inhibition effect of cefuroxime by conjugation with gold and silver. New J. Chem. 2014, 38, 1641–1646. [Google Scholar] [CrossRef]
- A Al-Shamahy, H.; Al-Shami, I.Z.; Al-Hamzi, M.A.; Abdul Majeed, A.L.A. Efficacy of some Antibiotics against Streptococcus Mutans Associated with Tooth decay in Children and their Mothers. Online J. Dent. Oral. Health 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Monowar, T.; Rahman, S.; Bhore, S.J.; Raju, G.; Sathasivam, K.V. Silver Nanoparticles Synthesized by Using the Endophytic Bacterium Pantoea ananatis are Promising Antimicrobial Agents against Multidrug Resistant Bacteria. Molecules 2018, 23, 3220. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol. 2017, 207, 39–53. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Nalini, S.P.K. Biotemplates in the green synthesis of silver nanoparticles. Biotechnol. J. 2010, 5, 1098–1110. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Ghaedi, M.; Yousefinejad, M.; Safarpoor, M.; Khafri, H.Z.; Purkait, M.K. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J. Ind. Eng. Chem. 2015, 31, 167–172. [Google Scholar] [CrossRef]
- Halawani, E.M.; Hassan, A.M.; El-Rab, S.M.G. Nanoformulation of Biogenic Cefotaxime-Conjugated-Silver Nanoparticles for Enhanced Antibacterial Efficacy Against Multidrug-Resistant Bacteria and Anticancer Studies. Int. J. Nanomed. 2020, 15, 1889–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, A.; Kumar, R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Adv. 2019, 9, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Kasraei, S.; Sami, L.; Hendi, S.; Alikhani, M.Y.; Rezaei-Soufi, L.; Khamverdi, Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod. 2014, 39, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Azarsina, M.; Kasraei, S.; Yousefi-Mashouf, R.; Dehghani, N.; Shirinzad, M. The Antibacterial Properties of Composite Resin Containing Nanosilver against Streptococcus mutans and Lactobacillus. J. Contemp. Dent. Pract. 2013, 14, 1014–1018. [Google Scholar] [CrossRef]
- Dias, H.B.; Bernardi, M.I.B.; Marangoni, V.S.; Bernardi, A.C.D.A.; Rastelli, A.N.D.S.; Hernandes, A.C. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater. Sci. Eng. C 2019, 96, 391–401. [Google Scholar] [CrossRef]
- Panpaliya, N.P.; Dahake, P.T.; Kale, Y.J.; Dadpe, M.V.; Kendre, S.B.; Siddiqi, A.G.; Maggavi, U.R. In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent. J. 2019, 31, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Deveci, C.; Tuzuner, T.; Cinar, C.; E Odabas, M.; Buruk, C.K. Short-term antibacterial activity and compressive strength of biodentine containing chlorhexidine/cetirimide mixtures. Niger. J. Clin. Pract. 2019, 22, 227–231. [Google Scholar] [PubMed]
- Harshiny, M.; Matheswaran, M.; Arthanareeswaran, G.; Kumaran, S.; Rajasree, S. Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf. 2015, 121, 135–141. [Google Scholar] [CrossRef]
- Vavia, P.; Chaudhari, S.; Karnik, A.; Adhikary, A.; Tandale, R. Simultaneous UV spectrophotometric method for the estimation of cefuroxime axetil and probenecid from solid dosage forms. Indian J. Pharm. Sci. 2006, 68, 59. [Google Scholar] [CrossRef] [Green Version]
- Gad El-Rab, S.M.F.; Abo-Amer, A.E.; Asiri, A.M. Biogenic Synthesis of ZnO Nanoparticles and Its Potential Use as Antimicrobial Agent against Multidrug-Resistant Pathogens. Curr. Microbiol. 2020, 77, 1767–1779. [Google Scholar]
- Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Hussein, M.Z.; Ismail, M.; Webster, T.J. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int. J. Nanomed. 2014, 9, 549–557. [Google Scholar]
- Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process. Biochem. 2010, 45, 1065–1071. [Google Scholar] [CrossRef]
- Mittal, S.; Soni, H.; Sharma, D.K.; Mittal, K.; Pathania, V.; Sharma, S. Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J. Int. Soc. Prev. Community Dent. 2015, 5, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Caufield, P.W.; Schön, C.N.; Saraithong, P.; Li, Y.; Argimón, S. Oral Lactobacilli and dental caries: A model for niche adaptation in humans. J. Dent. Res. 2015, 94, 110S–118S. [Google Scholar] [CrossRef]
- Enan, E.T.; A Ashour, A.; Basha, S.; Felemban, N.H.; Gad El-Rab, S.M.F. Antimicrobial activity of biosynthesized silver nanoparticles, amoxicillin, and glass-ionomer cement against Streptococcus mutans and Staphylococcus aureus. Nanotechnology 2021, 32, 215101. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol-2009; ASM Microbe Library; American Society for Microbiology: New York, NY, USA, 2016; pp. 1–23. [Google Scholar]
- Souza, J.C.M.; Mota, R.R.C.; Sordi, M.B.; Passoni, B.B.; Benfatti, C.A.M.; Magini, R.S. Biofilm formation on different materials used in oral rehabilitation Braz. Dent. J. 2016, 27, 141–147. [Google Scholar]
- Fadl-Allah, S.F.; Montaser, A.A. Gad El-Rab, S.M.F. Biocorrosion control of electroless Ni-Zn-P coating based on carbon steel by the pseudomonas aeruginosa biofilm. Int. J. Electrochem. Sci. 2016, 11, 5490–5506. [Google Scholar] [CrossRef]
- Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017, 46, 1163–1170. [Google Scholar] [CrossRef] [Green Version]
- Shakera, M.; Shaaban, M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study. Int. J. Pharm. 2017, 525, 71–84. [Google Scholar] [CrossRef]
- Gad El-Rab, S.M.F.; Halawani, E.M.; Hassan, A.M. Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer. J. Microbiol. Biotechnol. 2018, 28, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.F.O.; Lima, K.M.G.; Cardoso, M.B.; Oliveira, J.F.A.; Melo, M.C.N.; Sant’Anna, C.; Eugênio, M.; Gasparotto, L.H.S. Doxycycline conjugated with polyvinylpyrrolidone-encapsulated silver nanoparticles: A polymer’s malevolent touch against Escherichia coli. RSC Adv. 2015, 5, 66886–66893. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Bunghez, I.R.; Somoghi, R.; Fierascu, I.; Mariana Ion, R. Characterization of silver nanoparticles obtained by using Rosmarinus officinalis extract and their antioxidant activity. Rev. Roum. Chim. 2014, 59, 213–218. [Google Scholar]
- Salehi, G.; Behnamghader, A.; Pazouki, M.; Mozafari, M. Metronidazole-loaded glass ionomer dental cements. Int. J. Appl. Ceram. Technol. 2020, 17, 1985–1997. [Google Scholar] [CrossRef]
- Brasil, M.; Filgueiras, A.; Campos, M.; Neves, M.; Eugênio, M.; Sena, L.; Sant’Anna, C.; Da Silva, V.; Diniz, C.; Sant’Ana, A. Synergism in the Antibacterial Action of Ternary Mixtures Involving Silver Nanoparticles, Chitosan and Antibiotics. J. Braz. Chem. Soc. 2018, 29, 2016–2033. [Google Scholar] [CrossRef]
- Garcia, F.A.V.; Tanomaru-Filho, M.; Chávez-Andrade, G.; Bosso-Martelo, R.; Basso-Bernardi, M.I.; Guerreiro-Tanomaru, J.M. Effect of Silver Nanoparticles on Physicochemical and Antibacterial Properties of Calcium Silicate Cements. Braz. Dent. J. 2016, 27, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valones, M.A.A.; Silva, I.C.G.; Gueiros, L.A.M.; Leão, J.C., Jr.; Carvalho, A.A.T.; Caldas, A.F. Clinical Assessment of Rosemary-based Toothpaste (Rosmarinus officinalis Linn.): A Randomized Controlled Double-blind Study. Braz. Dent. J. 2019, 30, 146–151. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, J.R.; de Jesus, D.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) extract decreases the biofilms viability of oral health interest. Braz. Dent. Sci. 2017, 20, 64–69. [Google Scholar] [CrossRef]
- Ionescu, A.C.; Cazzaniga, G.; Ottobelli, M.; Ferracane, J.L.; Paolone, G.; Brambilla, E. In vitro biofilm formation on resin-based composites cured under different surface conditions. J. Dent. 2018, 77, 78–86. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Ottobelli, M.; Ionescu, A.; Paolone, G.; Gherlone, E.; Ferracane, J.L.; Brambilla, E. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. J. Dent. 2017, 67, 43–52. [Google Scholar] [CrossRef]
- Marigo, L.; Nocca, G.; Fiorenzano, G.; Callà, C.; Castagnola, R.; Cordaro, M.; Paolone, G.; Sauro, S. Influences of Different Air-Inhibition Coatings on Monomer Release, Microhardness, and Color Stability of Two Composite Materials. BioMed Res. Int. 2019, 2019, 4240264. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.S.; Mostafa, H.M.; Mohamed, S.H.; El-Moez, S.I.A.; Kamel, Z. Combination of Silver Nanoparticles and Vancomycin to Overcome Antibiotic Resistance in Planktonic/Biofilm Cell from Clinical and Animal Source. Microb. Drug Resist. 2020, 26, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Sun, L.; Zhang, X.; Sun, Y.; Wang, J. Fabrication and antibacterial properties of cefuroxime-loaded TiO2 nanotubes. Appl. Microbiol. Biotechnol. 2020, 104, 2947–2955. [Google Scholar] [CrossRef] [PubMed]
Powder | Liquid |
---|---|
Tricalcium silicate, dicalcium silicate, calcium carbonate and oxide, iron oxide, and zirconium oxide | Calcium chloride and hydro soluble polymer |
(Septodont, Saint-Maur-des-Fosses Cedex, France) |
Group Name | Abbreviation | Components |
---|---|---|
Group A (control) | BIOD | conventional BIOD without any addition. |
Group B | ROE-AgNPs/BIOD | (99.5% BIOD with 0.5% ROE-AgNPs, w/w). |
Group C | 0.5% Cefuroxime-0.5% ROE-AgNPs/BIOD | (99% BIOD with 1% Cefuroxime-ROE-AgNPs (1:1), w/w). |
Group D | 1.5% Cefuroxime-0.5% ROE-AgNPs/BIOD | (98% BIOD with 2% Cefuroxime-ROE-AgNPs (1:3), w/w). |
Group E | Cefuroxime/BIOD | (98.5% BIOD with 1.5% Cefuroxime, w/w). |
Product | MIC | ANOVA F Value | ANOVA p Value | Tukey Post Hoc | MBC (µg/mL) | ANOVA F Value | ANOVA p Value | Tukey Post Hoc |
---|---|---|---|---|---|---|---|---|
Cefuroxime a | 0.27 ± 5.3 mg/mL | 21.32 | 0.0001 | c < a, b b < a | 0.57 ± 7.3 mg/mL | 15.42 | 0.03 | c < b, a b < a |
AgNPs b | 25 ± 2.0 µg/mL | 35 ± 1.1 µg/mL | ||||||
Cefuroxime-ROE-AgNPs c | 8.5 ± 1.3 µg/mL | 16 ± 0.8 µg/mL |
Samples (Groups) | Inhibition Zone (mm) | ANOVA F Value | ANOVA p Value | Tukey Post Hoc | ||
---|---|---|---|---|---|---|
1 Day | 2 Weeks | 3 Weeks | ||||
a. Group A | 8 | 7 | 7 | NA | NA | NA |
b. Group B | 15 ± 2.51 | 12 ± 1.52 | 10 ± 0.57 | 8.71 | 0.03 | 1 day > 2 and 3rd week |
c. Group C | 19 ± 1.15 | 15 ± 0.57 | 13 ± 1.00 | 9.36 | 0.02 | 1 day > 2 and 3rd week |
d. Group D | 26 ± 1.52 | 22 ± 1.52 | 17 ± 1.15 | 15.24 | 0.001 | 1 day > 2 and 3rd week |
e. Group E | 8 | 7 | 7 | NA | NA | NA |
ANOVA F Value | 19.72 | 13.27 | 17.19 | |||
ANOVA p Value | 0.0001 | 0.001 | 0.001 | |||
Tukey post Hoc | d < c, b c < b | d < c, b c < b | d < c, b c < b |
Samples | AR (%) |
---|---|
A | 1.7 ± 0.10 |
B | 45.07 ± 1.22 |
C | 85.78 ± 0.92 |
D | 91.17 ± 1.12 |
E | 1.8 ± 0.110 |
F Value ANOVA | 19.34 |
p value ANOVA | 0.001 |
Tukey post Hoc | D < B, C C < B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad El-Rab, S.M.F.; Ashour, A.A.; Basha, S.; Alyamani, A.A.; Felemban, N.H.; Enan, E.T. Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans. Molecules 2021, 26, 6832. https://doi.org/10.3390/molecules26226832
Gad El-Rab SMF, Ashour AA, Basha S, Alyamani AA, Felemban NH, Enan ET. Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans. Molecules. 2021; 26(22):6832. https://doi.org/10.3390/molecules26226832
Chicago/Turabian StyleGad El-Rab, Sanaa M. F., Amal A. Ashour, Sakeenabi Basha, Amal Ahmed Alyamani, Nayef H. Felemban, and Enas Tawfik Enan. 2021. "Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans" Molecules 26, no. 22: 6832. https://doi.org/10.3390/molecules26226832
APA StyleGad El-Rab, S. M. F., Ashour, A. A., Basha, S., Alyamani, A. A., Felemban, N. H., & Enan, E. T. (2021). Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans. Molecules, 26(22), 6832. https://doi.org/10.3390/molecules26226832