Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Pressurized Liquid Extraction (PLE)
2.4. Extract Characterization
2.4.1. Determination of Total Phenolic Compounds (TPC)
2.4.2. Determination of Total Carbohydrate (TC)
2.4.3. Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-q-TOF-MS/MS)
2.5. Bioactivity Tests
2.5.1. DPPH Radical Scavenging Assay
2.5.2. AChE Assay
2.5.3. LOX Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Pressurized Liquid Extraction of Ammodaucus leucotrichus
3.2. In Vitro Assays
3.3. Chemical Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Halla, N.; Heleno, S.A.; Costa, P.; Fernandes, I.P.; Calhelha, R.C.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Chemical Profile and Bioactive Properties of the Essential Oil Isolated from Ammodaucus Leucotrichus Fruits Growing in Sahara and Its Evaluation as a Cosmeceutical Ingredient. Ind. Crop. Prod. 2018, 119, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Negueruela, A.; Pérez-Alonso, M.J.; De Paz, P.L.P.; Palá-Paúl, J.; Sanz, J. Analysis by Gas Chromatography-Mass Spectrometry of the Volatiles from the Fruits of Ammodaucus Leucotrichus Subsp. Leucotrichus and Subsp. Nanocarpus Grown in North Africa and the Canary Islands, Respectively. J. Chromatogr. A 2006, 1108, 273–275. [Google Scholar] [CrossRef]
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algerie et des Regions Desertiques Meridionales; Centre Nationale de la Recherche Scientifique: Paris, France, 1963; Volume 2. [Google Scholar]
- Benhouhou, S. Ammodaucus leucotrichus Coss. & Dur. Guide to Medicinal Plants in North Africa; Batanouny, K.H., Ed.; IUCN Centre for Mediterranean Cooperation: Malaga, Spain, 2005. [Google Scholar]
- Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes, Cardiac and Renal Diseases in the North Centre Region of Morocco (Fez-Boulemane). J. Ethnopharmacol. 2001, 77, 175–182. [Google Scholar]
- Jamila, F.; Mostafa, E. Ethnobotanical Survey of Medicinal Plants Used by People in Oriental Morocco to Manage Various Ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
- Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A Review of Algerian Medicinal Plants Used in the Treatment of Diabetes. J. Ethnopharmacol. 2019, 238, 2–28. [Google Scholar] [CrossRef]
- Chinsembu, K.C. Diabetes Mellitus and Nature’s Pharmacy of Putative Antidiabetic Plants. J. Herb. Med. 2019, 15, 100230. [Google Scholar] [CrossRef]
- Mouderas, F.; Lahfa, F.B.; Mezouar, D.; El Houda Benahmed, N. Valorization and Identification of Bioactive Compounds of a Spice Ammodaucus Leucotrichus. Adv. Tradit. Med. 2020, 20, 159–168. [Google Scholar] [CrossRef]
- Ziani, B.E.C.; Rached, W.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Detailed Chemical Composition and Functional Properties of Ammodaucus Leucotrichus Cross. & Dur. and Moringa Oleifera Lamarck. J. Funct. Foods 2019, 53, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Sadaoui, N.; Bec, N.; Barragan-Montero, V.; Kadri, N.; Cuisinier, F.; Larroque, C.; Arab, K.; Khettal, B. The Essential Oil of Algerian Ammodaucus Leucotrichus Coss. & Dur. and Its Effect on the Cholinesterase and Monoamine Oxidase Activities. Fitoterapia 2018, 130, 1–5. [Google Scholar] [CrossRef]
- El Haci, I.A.; Bekkara, A.F. Evaluation of the Antioxidant Activities of Organic Extracts from Ammodaucus Leucotrichus Coss & Dur Fruit Part Harvested from the Algerian Sahara. Adv. Complement. Altern. Med. 2018, 1, 8–12. [Google Scholar]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of Phenolic Compounds and Mannitol in Olive Leaves Extracts from Six Spanish Cultivars: Extraction with the Soxhlet Method and Pressurized Liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Comparative Study of Conventional and Pressurized Liquid Extraction for Recovering Bioactive Compounds from Lippia Citriodora Leaves. Food Res. Int. 2018, 109, 213–222. [Google Scholar] [CrossRef]
- de Oliveira, N.A.; Cornelio-Santiago, H.P.; Fukumasu, H.; de Oliveira, A.L. Green Coffee Extracts Rich in Diterpenes—Process Optimization of Pressurized Liquid Extraction Using Ethanol as Solvent. J. Food Eng. 2018, 224, 148–155. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–398. [Google Scholar] [CrossRef]
- Hernández-Corroto, E.; Plaza, M.; Marina, M.L.; García, M.C. Sustainable Extraction of Proteins and Bioactive Substances from Pomegranate Peel (Punica Granatum L.) Using Pressurized Liquids and Deep Eutectic Solvents. Innov. Food Sci. Emerg. Technol. 2020, 60, 102314. [Google Scholar] [CrossRef]
- Gallego, R.; Martínez, M.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Development of a Green Downstream Process for the Valorization of Porphyridium Cruentum Biomass. Molecules 2019, 24, 1564. [Google Scholar] [CrossRef] [Green Version]
- Balvardi, M.; Mendiola, J.A.; Castro-Gómez, P.; Fontecha, J.; Rezaei, K.; Ibáñez, E. Development of Pressurized Extraction Processes for Oil Recovery from Wild Almond (Amygdalus Scoparia). JAOCS J. Am. Oil Chem. Soc. 2015, 92, 1503–1511. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative Oil Extraction Methods from Echium Plantagineum L. Seeds Using Advanced Techniques and Green Solvents. Food Chem. 2018, 244, 75–82. [Google Scholar] [CrossRef]
- Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective Effects of Anthocyanins on Neurodegenerative Diseases. Trends Food Sci. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase Inhibitors from Plants and Fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef]
- Czapski, G.A.; Czubowicz, K.; Strosznajder, J.B.; Strosznajder, R.P. The Lipoxygenases: Their Regulation and Implication in Alzheimer’s Disease. Neurochem. Res. 2016, 41, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Van Leyen, K.; Arai, K.; Jin, G.; Kenyon, V.; Gerstner, B.; Rosenberg, P.A.; Holman, T.R.; Lo, E.H. Novel Lipoxygenase Inhibitors as Neuroprotective Reagents. J. Neurosci. Res. 2008, 86, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants Traditionally Used in Age Related Brain Disorders—A Survey of Ethnobotanical Literature. J. Ethnopharmacol. 2007, 113, 363–381. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D.; Hiltunen, R. Effect of an Acid Treatment on the Phytochemical and Antioxidant Characteristics of Extracts from Selected Lamiaceae Species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 350–356. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible Molecular Networking of Untargeted Mass Spectrometry Data Using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sanchez-Martinez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibanez, E.; Cifuentes, A. In Vitro Neuroprotective Potential of Terpenes from Industrial Orange Juice By-Products. Food Funct. 2021, 12, 302–314. [Google Scholar] [CrossRef]
- Whent, M.; Ping, T.; Kenworthy, W.; Yu, L. High-Throughput Assay for Detection of Soybean Lipoxygenase-1. J. Agric. Food Chem. 2010, 58, 12602–12607. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Pressurized Liquid Extraction of Phenolic Compounds from Rice (Oryza Sativa) Grains. Food Chem. 2016, 192, 452–459. [Google Scholar] [CrossRef]
- de Santana, Á.L.; Osorio-Tobón, J.F.; Cárdenas-Toro, F.P.; Steel, C.J.; de Almeida Meireles, M.A. Partial-Hydrothermal Hydrolysis Is an Effective Way to Recover Bioactives from Turmeric Wastes. Food Sci. Technol. 2018, 38, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Neoformation of Antioxidants in Glycation Model Systems Treated under Subcritical Water Extraction Conditions. Food Res. Int. 2010, 43, 1123–1129. [Google Scholar] [CrossRef]
- Plaza, M.; Abrahamsson, V.; Turner, C. Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. J. Agric. Food Chem. 2013, 61, 5500–5510. [Google Scholar] [CrossRef]
- Mašković, P.Z.; Veličković, V.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Mitić, M.; Vujić, J. Biological Activity and Chemical Profile of Lavatera Thuringiaca L. Extracts Obtained by Different Extraction Approaches. Phytomedicine 2018, 38, 118–124. [Google Scholar] [CrossRef]
- Silva, A.S.; Reboredo-Rodríguez, P.; Süntar, I.; Sureda, A.; Belwal, T.; Loizzo, M.R.; Tundis, R.; Sobarzo-Sanchez, E.; Rastrelli, L.; Forbes-Hernandez, T.Y.; et al. Evaluation of the Status Quo of Polyphenols Analysis: Part I—Phytochemistry, Bioactivity, Interactions, and Industrial Uses. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3191–3218. [Google Scholar] [CrossRef]
- Antunes-Ricardo, M.; García-Cayuela, T.; Mendiola, J.A.; Ibañez, E.; Gutiérrez-Uribe, J.A.; Cano, M.P.; Guajardo-Flores, D. Supercritical CO2 Enzyme Hydrolysis as a Pretreatment for the Release of Isorhamnetin Conjugates from Opuntia Ficus-Indica (L.) Mill. J. Supercrit. Fluids 2018, 141, 21–28. [Google Scholar] [CrossRef]
- Soria, A.C.; Sanz, M.L.; Villamiel, M. Determination of Minor Carbohydrates in Carrot (Daucus Carota L.) by GC-MS. Food Chem. 2009, 114, 758–762. [Google Scholar] [CrossRef]
- Song, J.; Yan, Y.; Wang, X.; Li, X.; Chen, Y.; Li, L.; Li, W. Characterization of Fatty Acids, Amino Acids and Organic Acids in Three Colored Quinoas Based on Untargeted and Targeted Metabolomics. LWT 2021, 140, 110690. [Google Scholar] [CrossRef]
- Mišan, A.Č.; Mimica-Dukić, N.M.; Mandić, A.I.; Sakač, M.B.; Milovanović, I.L.; Sedej, I.J. Development of a Rapid Resolution HPLC Method for the Separation and Determination of 17 Phenolic Compounds in Crude Plant Extracts. Cent. Eur. J. Chem. 2011, 9, 133–142. [Google Scholar] [CrossRef]
- Farag, M.A.; Sharaf El-Din, M.G.; Aboul-Fotouh Selim, M.; Owis, A.I.; Abouzid, S.F. Mass Spectrometry-Based Metabolites Profiling of Nutrients and Anti-Nutrients in Major Legume Sprouts. Food Biosci. 2021, 39, 100800. [Google Scholar] [CrossRef]
- Pi, J.J.; Wu, X.; Rui, W.; Feng, Y.F.; Guo, J. Identification and Fragmentation Mechanisms of Two Kinds of Chemical Compositions in Eucommia Ulmoides by UPLC-ESI-Q-TOF-MS/MS. Chem. Nat. Compd. 2016, 52, 144–148. [Google Scholar] [CrossRef]
- Barnaba, C.; Nardin, T.; Pierotti, A.; Malacarne, M.; Larcher, R. Targeted and Untargeted Characterisation of Free and Glycosylated Simple Phenols in Cocoa Beans Using High Resolution-Tandem Mass Spectrometry (Q-Orbitrap). J. Chromatogr. A 2017, 1480, 41–49. [Google Scholar] [CrossRef]
- Rebey, I.B.; Bourgou, S.; Debez, I.B.S.; Karoui, I.J.; Sellami, I.H.; Msaada, K.; Limam, F.; Marzouk, B. Effects of Extraction Solvents and Provenances on Phenolic Contents and Antioxidant Activities of Cumin (Cuminum Cyminum L.) Seeds. Food Bioprocess Technol. 2012, 5, 2827–2836. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.H.; Hu, Y.J.; Chen, H.; Yang, F.Q. Comparative Assessment of in Vitro Thrombolytic and Fibrinolysis Activity of Four Aloe Species and Analysis of Their Phenolic Compounds by LC–MS. S. Afr. J. Bot. 2018, 119, 325–334. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, O.S.; Kim, B.Y.; Jeong, S.J. Apigetrin from Scutellaria Baicalensis Georgi Inhibits Neuroinflammation in BV-2 Microglia and Exerts Neuroprotective Effect in HT22 Hippocampal Cells. J. Med. Food 2016, 19, 1032–1040. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Alvarez-Rivera, G.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A. Integrated Strategy for the Extraction and Profiling of Bioactive Metabolites from Passiflora Mollissima Seeds Combining Pressurized-Liquid Extraction and Gas/Liquid Chromatography–High Resolution Mass Spectrometry. J. Chromatogr. A 2019, 1595, 144–157. [Google Scholar] [CrossRef]
Samples | AChE | LOX | DPPH |
---|---|---|---|
EtOH-40 °C | n.d | 197.621 ± 5.646 f | 287.699 ± 1.816 f |
EtOH-110 °C | n.d | 140.076 ± 9.076 e | 92.200 ± 6.067 c |
EtOH-180 °C | 300.458 ± 18.275 d | 107.973 ± 14.001 e | 60.482 ± 0.176 b |
H2O-40 °C | 316.817 ± 36.329 d | 536.985 ± 7.255 d | 129.711 ± 7.146 e |
H2O-110 °C | 222.329 ± 32.459 c | 342.311 ± 5.510 c | 111.184 ± 4.176 d |
H2O-180 °C | 55.598 ± 7.724 b | 39.373 ± 4.783 b | 58.513 ± 4.756 b |
Positive control * | 4.061 ± 0.310 a | 14.298 ± 1.748 a | 18.714 ± 1.301 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abderrezag, N.; Sánchez-Martínez, J.D.; Louaer, O.; Meniai, A.-H.; Mendiola, J.A. Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS. Molecules 2021, 26, 6951. https://doi.org/10.3390/molecules26226951
Abderrezag N, Sánchez-Martínez JD, Louaer O, Meniai A-H, Mendiola JA. Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS. Molecules. 2021; 26(22):6951. https://doi.org/10.3390/molecules26226951
Chicago/Turabian StyleAbderrezag, Norelhouda, Jose David Sánchez-Martínez, Ouahida Louaer, Abdeslam-Hassen Meniai, and Jose A. Mendiola. 2021. "Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS" Molecules 26, no. 22: 6951. https://doi.org/10.3390/molecules26226951
APA StyleAbderrezag, N., Sánchez-Martínez, J. D., Louaer, O., Meniai, A. -H., & Mendiola, J. A. (2021). Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS. Molecules, 26(22), 6951. https://doi.org/10.3390/molecules26226951