Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of Compounds 1–3
2.2. Anti-Inflammatory Activity
2.3. In Silico Study of the Potential Compounds
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungi Material
3.3. Extraction and Isolation
3.4. Spectral and Physical Data of 1–3
3.4.1. Trametin A (1)
3.4.2. Trametin B (2)
3.4.3. Hexagonin F (3)
3.5. Anti-Inflammatory Bioactivity Examination
3.6. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Hwang, T.L.; Li, G.L.; Lan, Y.H.; Chia, Y.C.; Hsieh, P.W.; Wu, Y.H.; Wu, Y.C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic. Biol. Med. 2009, 46, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Ennis, M. Neutrophils in asthma pathophysiology. Curr. Allergy Asthma Rep. 2003, 3, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Malech, H.L.; Gallin, J.I. Neutrophils in human diseases. N. Engl. J. Med. 1987, 317, 687–694. [Google Scholar] [CrossRef]
- Okajima, K.; Harada, N.; Uchiba, M. Ranitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation. J. Pharmacol. Exp. Ther. 2002, 301, 1157–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc. Res. 2004, 61, 481–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witko-Sarsat, V.; Rieu, P.; Descamps-Latscha, B.; Lesavre, P.; Halbwachs-Mecarelli, L. Neutrophils: Molecules, functions and pathophysiological aspects. Lab. Invest. 2000, 80, 617–653. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.X.; Lin, Z.B.; Duan, X.S.; Lu, J.; Ge, Z.H.; Li, X.J.; Li, M.; Xing, E.H.; Jia, J.; Lan, T.F.; et al. Ganoderma lucidum polysaccharides antagonize the suppression on lymphocytes induced by culture supernatants of B16F10 melanoma cells. J. Pharm. Pharmacol. 2011, 63, 725–735. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, G.; Fu, G.; Cheng, J.X.; Yang, B.B.; Peng, C. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. Int. J. Oncol. 2011, 38, 1319–1327. [Google Scholar] [CrossRef]
- Ken, C.F.; Chen, I.J.; Lin, C.T.; Liu, S.M.; Wen, L.; Lin, C.T. Monothiol glutaredoxin cDNA from Taiwanofungus camphorata: A novel CGFS-type glutaredoxin possessing glutathione reductase activity. J. Agric. Food Chem. 2011, 59, 3828–3835. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.T.; Yao, C.J.; Yan, J.L.; Chuang, S.E.; Lee, L.M.; Chen, C.M.; Yeh, C.F.; Li, C.H.; Lai, G.M. Apoptotic cell death and inhibition of Wnt/β-Catenin signaling pathway in human colon cancer cells by an active fraction (HS7) from Taiwanofungus camphoratus. Evid. Based Complement. Alternat. Med. 2011, 2011, 750230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.S.; Chao, C.H.; Shen, D.Y.; Chan, H.H.; Chen, C.H.; Liao, Y.R.; Wu, S.J.; Leu, Y.L.; Shen, Y.C.; Kuo, Y.H.; et al. Biologically active constituents from the fruiting body of Taiwanofungus camphoratus. Bioorg. Med. Chem. 2011, 19, 677–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.J.; Leu, Y.L.; Chen, C.H.; Chao, C.H.; Shen, D.Y.; Chan, H.H.; Lee, E.J.; Wu, T.S.; Wang, Y.H.; Shen, Y.C.; et al. Camphoratins A−J, potent cytotoxic and anti-inflammatory triterpenoids from the fruiting body of Taiwanofungus camphoratus. J. Nat. Prod. 2010, 73, 1756–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.J.; Lin, S.Y.; Wu, W.C.; Hou, W.C. DPPH radical scavenging and semicarbazide-sensitive amine oxidase inhibitory and cytotoxic activities of Taiwanofungus camphoratus (Chang-chih). Biosci. Biotechnol. Biochem. 2007, 71, 1873–1878. [Google Scholar] [CrossRef] [Green Version]
- Trinh, T.K.; Ngo, A. Study on the Genus Macrocybe Pegler & Lodge, A New Genus was Firstly Found to the Macro Fungi Flora of Vietnam, Genetics and Applications–Biotechnology; 2001; pp. 56–60. [Google Scholar]
- Lincoff, G.H. The Audubon Society Field Guide to North American Mushrooms; Alfred A. Knopf Inc.: New York, NY, USA, 1988. [Google Scholar]
- Overholts, L.O. The Polyporaceae of the United States, Alaska and Canada; University of Michigan Press: Ann Arbor, MI, USA; Geoffrey Cumberlege: London, UK, 1953. [Google Scholar]
- Pegler, D.N. The Mushroom Identifier; The Apple Press: London, UK, 1994. [Google Scholar]
- Rea, C. British Basidiomycetes. London, UK, 1922. Available online: https://doi.org/10.5962/bhl.title.17959 (accessed on 29 November 2021).
- Ryvarden, L.; Johansen, I. A Preliminary Polypore Flora of East. Africa; Gronlands Grayfiske A/s: Oslo, Norway, 1980. [Google Scholar]
- Ryvarden, L.; Gilbertson, R.L. European Polypores Part. 1; Gronlands Grayfiske A/s: Oslo, Norway, 1993. [Google Scholar]
- Ryvarden, L.; Gilbertson, R.L. European Polypores Part. 2; Gronlands Grayfiske A/s: Oslo, Norway, 1994. [Google Scholar]
- Singer, R. The Agaricales in Modern Taxonomy; Sven Koeltlz Scientific Books: Königstein, Germany, 1986. [Google Scholar]
- Smith, A.H. The mushroom Hunter’s Field Guide; University of Michigan Press: Ann Arbor, MI, USA, 1980. [Google Scholar]
- Teng, S.C. Fungi of China; Mycotaxon Ltd.: New York, NY, USA, 1996. [Google Scholar]
- Walder, R.; Kalvatchev, Z.; Garzaro, D.; Barrios, M. Natural products from the tropical rain forest of Venezuela as inhibitors of HIV-1 replication. Acta Cient. Venez. 1995, 46, 110–114. [Google Scholar]
- Vrsanska, M.; Voberkova, S.; Langer, V.; Palovcikova, D.; Moulick, A.; Adam, V.; Kopel, P. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules 2016, 21, 1553. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.K.; Gu, Y.A.; Jeong, Y.T.; Song, C.H. Anti-complementary activities of exo- and endo-biopolymer produced by submerged mycelial culture of eight different mushrooms. Mycobiology 2007, 35, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, H.X.; Ng, T.B. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007, 28, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Hung, D.X.; Kuo, P.C.; Tuan, N.N.; Trung, H.V.; Thanh, N.T.; Ha, N.T.; Giang, B.L.; Trung, N.Q.; Ngan, N.T.; Hai, H.V.; et al. Triterpenoids and steroids from the fruiting bodies of Hexagonia tenuis and their cytotoxicity. Nat. Prod. Res. 2021, 35, 251–256. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.Y. A new triterpene from fungal fruiting bodies of Ganoderma sinense. Zhongcaoyao 2010, 41, 8–11. [Google Scholar]
- Shao, H.J.; Qing, C.; Wang, F.; Zhang, Y.L.; Luo, D.Q.; Liu, J.K. A new cytotoxic lanostane triterpenoid from the Basidiomycete Hebeloma versipelle. J. Antibiot. 2005, 58, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.C.; Maillard, M.P.; Hostettmann, K. Antimicrobial steroids from the fungus Fomitopsis pinicola. Phytochemistry 1996, 41, 1041–1046. [Google Scholar] [CrossRef]
- Tai, T.; Akahori, A.; Shingu, T. Triterpenes of Poria cocos. Phytochemistry 1993, 32, 1239–1244. [Google Scholar] [CrossRef]
- Shirane, N.; Murabayashi, A.; Masuko, M.; Uomori, A.; Yoshimura, Y.; Seo, S.; Uchida, K.; Takeda, K. Effect on ergosterol biosynthesis of a fungicide, SSF-109, in Botrytis cinerea. Phytochemistry 1990, 29, 2513–2520. [Google Scholar] [CrossRef]
- Kikuchi, T.; Uchiyama, E.; Ukiya, M.; Tabata, K.; Kimura, Y.; Suzuki, T.; Akihisa, T. Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos. J. Nat. Prod. 2011, 74, 137–144. [Google Scholar] [CrossRef]
- Han, J.J.; Bao, L.; Tao, Q.Q.; Yao, Y.J.; Liu, X.Z.; Yin, W.B.; Liu, H.W. Gloeophyllins A–J, cytotoxic ergosteroids with various skeletons from a Chinese Tibet fungus Gloeophyllum abietinum. Org. Lett. 2015, 17, 2538–2541. [Google Scholar] [CrossRef] [PubMed]
- Schinkovitz, A.; Kaur, A.; Urban, E.; Zehl, M.; Páchniková, G.; Wang, Y.; Kretschmer, N.; Slaninová, I.; Pauli, G.F.; Franzblau, S.G.; et al. Cytotoxic constituents from Lobaria scrobiculata and a comparison of two bioassays for their evaluation. J. Nat. Prod. 2014, 77, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, I.N.; Zahoor, A.; Hussain, H.; Ahmed, I.; Ahmad, V.U.; Padula, D.; Draeger, S.; Schulz, B.; Meier, K.; Steinert, M.; et al. Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: Absolute configuration of diversonol. J. Nat. Prod. 2011, 74, 365–373. [Google Scholar] [CrossRef]
- Niedermeyer, T.H.J.; Lindequist, U.; Mentel, R.; Gördes, D.; Schmidt, E.; Thurow, K.; Lalk, M. Antiviral terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005, 68, 1728–1731. [Google Scholar] [CrossRef]
- Kusano, G.; Koike, Y.; Inoue, H.; Nozoe, S. The constituents of Gymnopilus spectabilis. Chem. Pharm. Bull. 1986, 34, 3465–3470. [Google Scholar] [CrossRef] [Green Version]
- Sonnenbichler, J.; Sonnenbichler, I.; Schwarz, D. Biosynthesis of oosponol and oospoglycol elucidated by 13C NMR. Phytochemistry 1997, 44, 267–269. [Google Scholar] [CrossRef]
- Majetich, G.; Grove, J.L. Synthesis of 8-hydroxyisochromenes and 8-hydroxyisocoumarins from 3-ethoxycyclohex-2-en-1-one. Heterocycles 2011, 84, 983–1012. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Li, Y.C. Constituents of the bark of Ficus microcarpa L.f. J. Chin. Chem. Soc. 1997, 44, 321–325. [Google Scholar] [CrossRef]
- Wang, X.H.; Hou, Y.Z.; Pan, X.h.; Wang, Q. Sterol compounds and their anti-complementary activities of Cordia dichotoma. Chem. Nat. Compd. 2020, 56, 759–760. [Google Scholar] [CrossRef]
- Ling, T.; Lang, W.H.; Martinez-Montemayor, M.M.; Rivas, F. Development of ergosterol peroxide probes for cellular localisation studies. Org. Biomol. Chem. 2019, 17, 5223–5229. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.J.; Kincses, A.; Gajdács, M.; Spengler, G.; dos Santos, D.J.V.A.; Molnár, J.; Ferreira, M.-J.U. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J. Nat. Prod. 2018, 81, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.F.; Liu, C.M.; Kao, C.L.; Chen, C.Y. Antioxidant and anticancer constituents from the leaves of Liriodendron tulipifera. Molecules 2014, 19, 4234–4245. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.Y.; Lin, H.C.; Teng, C.M.; Wu, Y.C. Phytochemical and pharmacological studies on Chinese Paeonia species. J. Chin. Chem. Soc. 2000, 47, 381–388. [Google Scholar] [CrossRef]
- Sumarah, M.W.; Puniani, E.; Blackwell, B.A.; Miller, J.D. Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J. Nat. Prod. 2008, 71, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Ukiya, M.; Akihisa, T.; Tokuda, H.; Hirano, M.; Oshikubo, M.; Nobukuni, Y.; Kimura, Y.; Tai, T.; Kondo, S.; Nishino, H. Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos. J. Nat. Prod. 2002, 65, 462–465. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, B.; Liang, J.; Han, J.; Zhou, L.; Zhao, R.; Liu, H.; Dai, H. Lanostane triterpenoids with PTP1B inhibitory and glucose-uptake stimulatory activities from mushroom Fomitopsis pinicola collected in North America. J. Agric. Food Chem. 2020, 68, 10036–10049. [Google Scholar] [CrossRef] [PubMed]
- Sofrenić, I.; Anđelković, B.; Todorović, N.; Stanojković, T.; Vujisić, L.; Novaković, M.; Milosavljević, S.; Tešević, V. Cytotoxic triterpenoids and triterpene sugar esters from the medicinal mushroom Fomitopsis betulina. Phytochemistry 2021, 181, 112580. [Google Scholar] [CrossRef]
- Li, C.; Yin, J.; Guo, F.; Zhang, D.; Sun, H.H. Ganoderic acid Sz, a new lanostanoid from the mushroom Ganoderma lucidum. Nat. Prod. Res. 2005, 19, 461–465. [Google Scholar] [CrossRef]
- Russo, A.; Cardile, V.; Piovano, M.; Caggia, S.; Espinoza, C.L.; Garbarino, J.A. Pro-apoptotic activity of ergosterol peroxide and (22E)-ergosta-7,22-dien-5alpha-hydroxy-3,6-dione in human prostate cancer cells. Chem. Biol. Interact. 2010, 184, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Alasbahi, R.; Melzig, M. The in vitro inhibition of human neutrophil elastase activity by some Yemeni medicinal plants. Sci. Pharm. 2008, 76, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Narayanaswamy, R.; Wai, L.K.; Abas, F.; Ismail, I.S. Molecular docking analysis of curcumin analogues as human neutrophil elastase inhibitors. Bangladesh, J. Pharmacol. 2014, 9, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Narayanaswamy, R.; Wai, L.K.; Esa, N.M. Molecular docking analysis of phytic acid and 4-hydroxyisoleucine as cyclooxygenase-2, microsomal prostaglandin E synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase inhibitors. Pharmacogn. Mag. 2017, 13, S512–S518. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Chung, P.J.; Ho, C.M.; Kuo, C.Y.; Hung, M.F.; Huang, Y.T.; Chang, W.Y.; Chang, Y.W.; Chan, K.H.; Hwang, T.L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide–activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 2013, 190, 6511–6519. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, S.J.F.; Dowle, M.D.; Harrison, L.A.; Clarke, G.D.E.; Inglis, G.G.A.; Johnson, M.R.; Shah, P.; Smith, R.A.; Amour, A.; Fleetwood, G.; et al. Discovery of further pyrrolidine trans-lactams as inhibitors of human neutrophil elastase (HNE) with potential as development candidates and the crystal structure of HNE complexed with an inhibitor (GW475151). J. Med. Chem. 2002, 45, 3878–3890. [Google Scholar] [CrossRef] [PubMed]
Samples | Superoxide Anion Generation | Elastase Release | ||
---|---|---|---|---|
Inhibition (%) a | Promotion (%) b | Inhibition (%) | Promotion (%) | |
T. cubensis | – c | 50.9 ± 5.1 *** | – | 98.5 ± 7.7 |
T. suaveolens | 15.2 ± 3.8 * | – | 1.9 ± 4.7 | – |
IC50 (μg/mL) d | IC50 (μg/mL) | |||
LY294002 e | 0.4 ± 0.02 *** | – | 1.5 ± 0.3 *** | – |
Position | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δH | δc | δH | δc | δH | δc | |
1 | 1.80 (1H, m) 1.95 (1H, m) | 38.8 | 1.75 (1H, m) 1.90 (1H, m) | 39.2 | 1.76 (1H, m) 1.91 (1H, m) | 38.9 |
2 | 1.65 (2H, m) | 32.4 | 1.52 (2H, m) | 33.1 | 1.64 (2H, m) | 32.4 |
3 | 3.16 (1H, dd, J = 8.0, 7.2 Hz) | 79.6 | 3.15 (1H, dd, J = 8.8, 7.2 Hz) | 79.7 | 3.16 (1H, dd, J = 8.8, 7.6 Hz) | 79.6 |
4 | – | 39.9 | – | 39.9 | – | 39.9 |
5 | 1.05 (1H, m) | 51.8 | 1.03 (1H, m) | 51.9 | 1.03 (1H, m) | 51.9 |
6 | 2.20 (2H, m) | 28.5 | 2.18 (2H, m) | 28.5 | 1.62 (1H, m) | 28.5 |
7 | 1.65 (2H, m) | 28.2 | 1.62 (2H, m) | 28.3 | 2.19 (1H, m) 2.37 (1H, m) | 28.2 |
8 | – | 135.4 | – | 135.6 | – | 135.4 |
9 | – | 136.2 | – | 136.2 | – | 136.2 |
10 | – | 38.3 | – | 38.3 | – | 38.3 |
11 | 1.60 (1H, m) 1.75 (1H, m) | 19.4 | 1.54 (1H, m) 1.72 (1H, m) | 19.5 | 1.55 (1H, m) 1.74 (1H, m) | 19.4 |
12 | 1.29 (2H, m) | 30.6 | 1.31 (2H, m) | 30.8 | 1.30 (2H, m) | 30.5 |
13 | – | 52.6 | – | 52.6 | – | 52.6 |
14 | – | 46.0 | – | 46.1 | – | 46.1 |
15 | 4.19 (1H, dd, J = 9.2, 5.6 Hz) | 73.7 | 4.16 (1H, dd, J = 9.6, 6.0 Hz) | 74.3 | 4.18 (1H, dd, J = 9.6, 5.6 Hz) | 73.9 |
16 | 2.05 (2H, m) | 21.7 | 1.99 (2H, m) | 21.8 | 1.99 (2H, m) | 21.8 |
17 | 2.20 (1H, m) | 47.1 | 2.18 (1H, m) | 47.0 | 2.19 (1H, m) | 47.1 |
18 | 1.00 (3H, s) | 19.6 | 0.99 (3H, s) | 19.6 | 1.00 (3H, s) | 19.6 |
19 | 0.83 (3H, s) | 16.8 | 0.85 (3H, s) | 16.2 | 0.84 (3H, s) | 16.2 |
20 | 2.20 (1H, m) | 49.0 | 2.18 (1H, m) | 47.2 | 2.19 (1H, m) | 51.1 |
21 | – | 180.2 | – | 180.4 | – | 178.6 |
22 | 1.25 (1H, m) 1.75 (1H, m) | 37.0 | 1.20 (1H, m) 1.74 (1H, m) | 37.1 | 1.21 (1H, m) 1.73 (1H, m) | 37.0 |
23 | 2.20 (2H, m) | 27.5 | 2.18 (2H, m) | 28.3 | 2.37 (2H, m) | 28.2 |
24 | 6.74 (1H, t, J = 6.8 Hz) | 142.5 | 6.45 (1H, td, J = 7.2, 1.2 Hz) | 137.2 | 6.63 (1H, t, J = 6.8 Hz) | 156.6 |
25 | – | 129.8 | – | 134.7 | – | 140.6 |
26 | – | 171.8 | – | 178.1 | 9.36 (1H, s) | 197.3 |
27 | 1.79 (3H, s) | 12.5 | 1.79 (3H, s) | 13.9 | 1.71 (3H, s) | 9.1 |
28 | 0.80 (3H, s) | 16.2 | 0.80 (3H, s) | 17.0 | 0.80 (3H, s) | 16.9 |
29 | 0.99 (3H, s) | 28.6 | 0.98 (3H, s) | 28.6 | 0.98 (3H, s) | 28.6 |
30 | 0.93 (3H, s) | 17.8 | 0.93 (3H, s) | 17.9 | 0.93 (3H, s) | 17.8 |
Compound | Superoxide Anion Generation | Elastase Release | ||
---|---|---|---|---|
IC50 (μM) a | Inh% b | IC50 (μM) | Inh% | |
1 | – c | 22.4 ± 3.1 ** | – | 25.4 ± 6.2 * |
3 | – | 8.7 ± 4.3 | – | 8.6 ± 1.1 ** |
5 | 2.3 ± 0.2 | 100.2 ± 1.1 *** | 5.0 ± 0.3 | 88.2 ± 3.4 *** |
6 | – | – | – | 35.1 ± 4.8 ** |
8 | – | -0.7 ± 1.5 | – | 3.1 ± 1.6 |
9 | – | -1.0 ± 2.6 | – | 3.7 ± 3.2 |
11 | – | 26.0 ± 7.8 * | – | 5.3 ± 4.0 |
14 | 3.7 ± 0.6 | 86.7 ± 3.9 *** | 5.2 ± 0.4 | 86.9 ± 6.3 *** |
15 | – | 3.9 ± 4.4 | – | 12.4 ± 0.8 *** |
19 | 4.1 ± 0.4 | 84.1 ± 7.0 *** | 4.3 ± 0.2 | 94.3 ± 3.8 *** |
24 | – | 13.2 ± 3.1 * | – | 15.6 ± 2.3 ** |
LY294002 d | 1.1 ± 0.3 | 100.6 ± 1.0 *** | 3.2 ± 1.0 | 76.7 ± 6.8 *** |
Compound | Affinity (kcal/mol) |
---|---|
5 | −6.9 |
14 | −7.4 |
19 | −7.0 |
LY294002 | −6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Ngan, N.T.; Cheng, K.-C.; Hwang, T.-L.; Thang, T.D.; Tuan, N.N.; Yang, M.-L.; Kuo, P.-C.; Wu, T.-S. Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity. Molecules 2021, 26, 7311. https://doi.org/10.3390/molecules26237311
Li Y-C, Ngan NT, Cheng K-C, Hwang T-L, Thang TD, Tuan NN, Yang M-L, Kuo P-C, Wu T-S. Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity. Molecules. 2021; 26(23):7311. https://doi.org/10.3390/molecules26237311
Chicago/Turabian StyleLi, Yue-Chiun, Nguyen Thi Ngan, Kun-Ching Cheng, Tsong-Long Hwang, Tran Dinh Thang, Nguyen Ngoc Tuan, Mei-Lin Yang, Ping-Chung Kuo, and Tian-Shung Wu. 2021. "Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity" Molecules 26, no. 23: 7311. https://doi.org/10.3390/molecules26237311
APA StyleLi, Y. -C., Ngan, N. T., Cheng, K. -C., Hwang, T. -L., Thang, T. D., Tuan, N. N., Yang, M. -L., Kuo, P. -C., & Wu, T. -S. (2021). Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity. Molecules, 26(23), 7311. https://doi.org/10.3390/molecules26237311