An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Baeyer, A. Ueber die reduction aromatischer verbindungen mittelst zinkstaub (On the reduction of aromatic compounds by means of zinc dust). Ann. Chem. Pharm. 1866, 140, 295–296. [Google Scholar] [CrossRef] [Green Version]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Metal-free synthesis of fluorinated indoles enabled by oxidative dearomatization. Angew. Chem. 2016, 128, 2283–2287. [Google Scholar] [CrossRef]
- Pindur, U.; Adam, R. Synthetically attractive indolization processes and newer methods for the preparation of selectively substituted indole. J. Heterocycl. Chem. 1988, 25, 1–8. [Google Scholar] [CrossRef]
- Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev. 2005, 105, 2873–2920. [Google Scholar] [CrossRef]
- Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev. 2006, 106, 2875–2911. [Google Scholar] [CrossRef]
- Taber, D.F.; Tirunahari, P.K. Indole synthesis: A review and proposed classification. Tetrahedron 2011, 67, 7195–7210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev. 2011, 111, PR215–PR283. [Google Scholar] [CrossRef] [PubMed]
- Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J.C. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: A focus on indole backbones. Chem. Soc. Rev. 2012, 41, 3929–3968. [Google Scholar] [CrossRef] [PubMed]
- De Sa Alves, F.R.; Barreiro, E.J.; Fraga, C.A.M. From nature to drug discovery: The indole scaffold as a “privileged structure”. Mini-Rev. Med. Chem. 2009, 9, 782–793. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- McGrath, N.A.; Brichacek, M.; Njardarson, J.T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 2010, 87, 1348–1349. [Google Scholar] [CrossRef]
- Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 2015, 115, 826–870. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of fluorinated molecules by transition metal mediated C−F bond activation to access fluorinated building blocks. Chem. Rev. 2015, 115, 931–972. [Google Scholar] [CrossRef]
- Nenajdenko, V.G.; Muzalevskiy, V.M.; Shastin, A.V. Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis. Chem. Rev. 2015, 115, 973–1050. [Google Scholar] [CrossRef] [PubMed]
- Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chem. Eur. J. 2017, 23, 14676–14701. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem 2004, 5, 570–589. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage. Sci. 2010, 66, 10–27. [Google Scholar] [CrossRef]
- Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem. 2014, 167, 16–29. [Google Scholar] [CrossRef]
- Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manage. Sci. 2017, 73, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Bégué, J.P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals; Tressaud, A., Haufe, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 553–778. [Google Scholar]
- Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef]
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem. 2014, 167, 37–54. [Google Scholar] [CrossRef]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef]
- Fluorine in Heterocyclic Chemistry; Nenajdenko, V.G. (Ed.) Springer: Heidelberg, Germany, 2014; Volume 1, p. 681. [Google Scholar]
- Fluorine in Heterocyclic Chemistry; Nenajdenko, V.G. (Ed.) Springer: Heidelberg, Germany, 2014; Volume 2, p. 760. [Google Scholar]
- Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; Petrov, V.A. (Ed.) Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Fluorinated Heterocycles; Gakh, A.; Kirk, K.L. (Eds.) Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Muzalevskiy, V.M.; Nenajdenko, V.G.; Shastin, A.V.; Balenkova, E.S.; Haufe, G. Synthesis of trifluoromethyl pyrroles and their benzo analogues. Synthesis 2009, 2009, 3905–3929. [Google Scholar]
- Serdyuk, O.V.; Abaev, V.T.; Butin, A.V.; Nenajdenko, V.G. Synthesis of fluorinated thiophenes and their analogues. Synthesis 2011, 2011, 2505–2529. [Google Scholar] [CrossRef]
- Serdyuk, O.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Synthesis and properties of fluoropyrroles and their analogues. Synthesis 2012, 2012, 2115–2137. [Google Scholar]
- Politanskaya, L.V.; Selivanova, G.A.; Panteleeva, E.V.; Tretyakov, E.V.; Platonov, V.E.; Nikul’shin, P.V.; Vinogradov, A.S.; Zonov, Y.A.V.; Karpov, V.M.; Mezhenkova, T.V.; et al. Organofluorine chemistry: Promising growth areas and challenges. Russ. Chem. Rev. 2019, 88, 425–569. [Google Scholar] [CrossRef]
- Available online: https://www.reaxys.com/#/search/quick (accessed on 4 November 2021).
- Blobaum, A.L.; Uddin, J.; Felts, A.S.; Crews, B.C.; Rouzer, C.A.; Marnett, L.J. The 2′-trifluoromethyl analogue of indomethacin is a potent and selective COX-2 inhibitor. ACS Med. Chem. Lett. 2013, 4, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, T.; Jiang, J.; Yang, M.-S.; Dingledine, R. Optimization studies of cinnamic amide EP2 antagonists. J. Med. Chem. 2014, 57, 4173–4184. [Google Scholar] [CrossRef] [PubMed]
- Trabbic, C.J.; Overmeyer, J.H.; Alexander, E.M.; Crissman, E.J.; Kvale, H.M.; Smith, M.A.; Erhardt, P.W.; Maltese, W.A. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J. Med. Chem. 2015, 5, 2489–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabbic, C.J.; George, S.M.; Alexander, E.M.; Du, S.; Offenbacher, J.M.; Crissman, E.J.; Overmeyer, J.H.; Maltese, W.A.; Erhardt, P.W. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur. J. Med. Chem. 2016, 122, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Rheinheimer, J.; Rath, R.; Kulkarni, S.; Rosenbaum, C.; Wiebe, C.; Brahm, L.; Siepe, I.; Haden, E.; Roehl, F.; Khanna, S.; et al. Indole and Azaindole Compounds with Substitued 6-Membered Aryl and Heteroaryl Rings as Agrochemical Fungicides. Patent WO201957660, 28 March 2019. [Google Scholar]
- Yoshida, M.; Yoshida, T.; Kobayashi, M.; Kamigata, N. Perfluoroalkylations of nitrogen-containing heteroaromatic compounds with bis(perfluoroalkanoyl) peroxides. J. Chem. Soc. Perkin Trans. I 1989, 909–914. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Li, Z.-T. Photoinduced electron-transfer reaction of difluorodiiodomethane with azaaromatic compounds and enamines. J. Chem. Soc. Perkin Trans. I 1993, 645–648. [Google Scholar] [CrossRef]
- Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Direct C2-trifluoromethylation of indole derivatives catalyzed by copper acetate. Tetrahedron Lett. 2010, 51, 5947–5949. [Google Scholar] [CrossRef]
- Wiehn, M.S.; Vinogradova, E.V.; Togni, A. Electrophilic trifluoromethylation of arenes and N-heteroarenes using hypervalent iodine reagents. J. Fluor. Chem. 2010, 131, 951–957. [Google Scholar] [CrossRef]
- Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.; Gillaizeau, I. Iron-catalyzed trifluoromethylation of enamide. Chem. Eur. J. 2015, 21, 3572–3575. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, J.; Blanchard, S.; Derat, E.; Desage-El Murr, M.; Fensterbank, L. Redox-ligand sustains controlled generation of CF3 radicals by well-defined copper complex. J. Chem. Sci. 2016, 7, 2030–2036. [Google Scholar] [CrossRef] [Green Version]
- Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. Trifluoromethylation of various aromatic compounds by CF3I in the presence of Fe(II) compound, H2O2 and dimethylsulfoxide. J. Fluor. Chem. 2010, 131, 98–105. [Google Scholar] [CrossRef]
- Straathof, N.J.W.; Gemoets, H.P.L.; Wang, X.; Schouten, J.C.; Hessel, V.; Noel, T. Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow. ChemSusChem 2014, 7, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Choi, S.; Ohkubo, K.; Fukuzumi, S.; Cho, E.J.; You, Y. Mechanisms and applications of cyclometalated Pt(II) complexes in photoredox catalytic trifluoromethylation. J. Chem. Sci. 2015, 6, 1454–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Pearson, R.M.; Lim, C.-H.; Sartor, S.M.; Ryan, M.D.; Yang, H.A.; Damrauer, N.H.; Miyake, G.M. Strongly reducing, visible-light organic photoredox catalysts as sustainable alternatives to precious metals. Chem. Eur. J. 2017, 23, 10962–10968. [Google Scholar] [CrossRef]
- Monteiro, J.L.; Carneiro, P.F.; Elsner, P.; Roberge, D.M.; Wuts, P.G.M.; Kurjan, K.C.; Gutmann, B.; Kappe, C.O. Continuous flow homolytic aromatic substitution with electrophilic radicals: A fast and scalable protocol for trifluoromethylation. Chem. Eur. J. 2017, 23, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Direct aromatic C-H trifluoromethylation via an electron-donor-acceptor complex. Chem. Eur. J. 2015, 21, 8355–8359. [Google Scholar] [CrossRef]
- Meucci, E.A.; Nguyen, S.N.; Camasso, N.M.; Chong, E.; Ariafard, A.; Canty, A.J.; Sanford, M.S. Nickel(IV)-catalyzed C-H trifluoromethylation of (hetero)arenes. J. Am. Chem. Soc. 2019, 141, 12872–12879. [Google Scholar] [CrossRef] [PubMed]
- Morstein, J.; Hou, H.; Cheng, C.; Hartwig, J.F. Trifluoromethylation of arylsilanes with [(phen)CuCF3]. Angew. Chem. Int. Ed. 2016, 55, 8054–8057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdiaj, I.; Bottecchia, C.; Alcazar, J.; Noël, T. Visible-light-induced trifluoromethylation of highly functionalized arenes and heteroarenes in continuous flow. Synthesis 2017, 49, 4978–4985. [Google Scholar]
- Miller, S.A.; van Beek, B.; Hamlin, T.A.; Bickelhaupt, F.M.; Leadbeater, N.E. A methodology for the photocatalyzed radical trifluoromethylation of indoles: A combined experimental and computational study. J. Fluor. Chem. 2018, 214, 94–100. [Google Scholar] [CrossRef]
- Xie, J.-J.; Wang, Z.-Q.; Jiang, G.-F. Metal-free oxidative trifluoromethylation of indoles with CF3SO2Na on the C2 position. RSC Adv. 2019, 9, 35098–35101. [Google Scholar] [CrossRef] [Green Version]
- Bazyar, Z.; Hosseini-Sarvari, M. Au@ZnO core-shell: Scalable photocatalytic trifluoromethylation using CF3CO2Na as an inexpensive reagent under visible light irradiation. Org. Process Res. Dev. 2019, 23, 2345–2353. [Google Scholar] [CrossRef]
- Ye, Y.; Cheung, K.P.S.; He, L.; Tsui, G.C. Synthesis of 2-(trifluoromethyl)indoles via domino trifluoromethylation/cyclization of 2-alkynylanilines. Org. Lett. 2018, 20, 1676–1679. [Google Scholar] [CrossRef]
- Pedroni, J.; Cramer, N. 2-(Trifluoromethyl)indoles via Pd(0)-catalyzed C(sp3)-H functionalization of trifluoroacetimidoyl chlorides. Org. Lett. 2016, 18, 1932–1935. [Google Scholar] [CrossRef]
- Doebelin, C.; Patouret, R.; Garcia-Ordonez, R.D.; Chang, M.R.; Dharmarajan, V.; Kuruvilla, D.S.; Novick, S.J.; Lin, I.; Cameron, M.D.; Griffin, P.R.; et al. N-Arylsulfonyl indolines as retinoic acid receptor-related orphan receptor γ (RORγ) agonists. ChemMedChem 2016, 11, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ma, Q. A New and efficient one-pot synthesis of 2-fluoroalkyl substituted indoles. J. Heterocycl. Chem. 2015, 52, 1893–1896. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Zhang, T.-F.; Ma, Q.-W.; Ni, W.-G. Bromotriphenylphosphonium salt promoted one-pot cyclization to 2-fluoroalkyl-substituted indoles. Synthesis 2014, 46, 3309–3314. [Google Scholar] [CrossRef]
- Ge, F.; Wang, Z.; Wan, W.; Hao, J. Grignard cyclization reaction of fluorinated N-arylimidoyl chlorides: A novel and facile access to 2-fluoroalkyl indoles. Synlett 2007, 2007, 447–450. [Google Scholar] [CrossRef]
- Wang, Z.; Ge, F.; Wan, W.; Jiang, H.; Hao, J. Fluorinated N-[2-(haloalkyl)phenyl]imidoyl chloride, a key intermediate for the synthesis of 2-fluoroalkyl substituted indole derivatives via Grignard cyclization process. J. Fluor. Chem. 2007, 128, 1143–1152. [Google Scholar] [CrossRef]
- Miyashita, K.I.; Tsuchiya, K.; Kondoh, K.; Miyabe, H.; Imanishi, T. Novel indole-ring construction method for the synthesis of 2-trifluoromethylindoles. Heterocycles 1996, 42, 513–516. [Google Scholar]
- Miyashita, K.; Kondoh, K.; Tsuchiya, K.; Miyabe, H.; Imanishi, T. Novel indole-ring formation by thermolysis of 2-(N-acylamino)benzylphosphonium salts. Effective synthesis of 2-trifluoromethylindoles. J. Chem. Soc. Perkin Trans. I 1996, 1261–1268. [Google Scholar] [CrossRef]
- Henegar, K.E.; Hunt, D.A. Expedient preparations of 2-trifluoromethylindole and its n-methyl derivative. Heterocycles 1996, 43, 1471–1475. [Google Scholar]
- Walewska-Królikiewicz, M.; Wilk, B.; Kwast, A.; Wróbel, Z. Two-step, regioselective, multigram-scale synthesis of 2-(trifluoromethyl)indoles from 2-nitrotoluenes. Tetrahedron Lett. 2021, 86, 153515. [Google Scholar] [CrossRef]
- Bujok, R.; Wrbel, Z.; Wojciechowski, K. Expedient synthesis of 1-hydroxy-4- and 1-hydroxy-6-nitroindoles. Synlett 2012, 23, 1315–1320. [Google Scholar]
- Muzalevskiy, V.M.; Nenajdenko, V.G.; Rulev, A.Y.U.; Ushakov, I.A.; Romanenko, G.V.; Shastin, A.V.; Balenkova, E.S.; Haufe, G. Selective synthesis of α-trifluoromethyl-β-arylenamines or vinylogous guanidinium salts by treatment of β-halo-β-trifluoromethylstyrenes with secondary amines under different conditions. Tetrahedron 2009, 65, 6991–7000. [Google Scholar] [CrossRef]
- Goldberg, A.A.; Muzalevskiy, V.M.; Shastin, A.V.; Balenkova, E.S.; Nenajdenko, V.G. Novel efficient synthesis of β-fluoro-β-(trifluoromethyl)styrenes. J. Fluor. Chem. 2010, 131, 384–388. [Google Scholar] [CrossRef]
- Rulev, A.Y.; Muzalevskiy, V.M.; Kondrashov, E.V.; Ushakov, I.A.; Shastin, A.V.; Balenkova, E.S.; Haufe, G.; Nenajdenko, V.G. A cascade approach to captodative trifluoromethylated enamines or vinylogous guanidinium salts: Aromatic substituents as switches of reaction direction. Eur. J. Org. Chem. 2010, 2010, 300–310. [Google Scholar]
- Muzalevskiy, V.M.; Nenajdenko, V.G.; Shastin, A.V.; Balenkova, E.S.; Haufe, G. α-Trifluoromethyl-β-aryl enamines in the synthesis of trifluoromethylated heterocycles by the Fischer and the Pictet–Spengler reactions. Tetrahedron 2009, 65, 7553–7561. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Sizova, Z.A.; Panyushkin, V.V.; Chertkov, V.A.; Khrustalev, V.N.; Nenajdenko, V.G. α,β-Disubstituted CF3-enones as a trifluoromethyl building block: Regioselective preparation of totally substituted 3-CF3-pyrazoles. J. Org. Chem. 2021, 86, 2385–2405. [Google Scholar] [CrossRef] [PubMed]
- Muzalevskiy, V.M.; Sizova, Z.A.; Abaev, V.T.; Nenajdenko, V.G. Synthesis of 2-trifluoromethylated quinolines from CF3-alkenes. Org. Biomol. Chem. 2021, 19, 4303–4319. [Google Scholar] [CrossRef] [PubMed]
- Muzalevskiy, V.M.; Sizova, Z.A.; Nenajdenko, V.G. Modular construction of functionalized 2-CF3-indoles. Org. Lett. 2021, 23, 5973–5977. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Shastin, A.V.; Balenkova, E.S.; Haufe, G.; Nenajdenko, V.G. Synthesis of alpha-trifluoromethyl-phenethylamines from alpha-trifluoromethyl beta-aryl enamines and beta-chloro-beta-(trifluoromethyl)styrenes. J. Fluor. Chem. 2011, 132, 1247–1253. [Google Scholar] [CrossRef]
- Korotchenko, V.N.; Shastin, A.V.; Nenajdenko, V.G.; Balenkova, E.S. Novel efficient synthesis of dibromoalkenes. A first example of catalytic olefination of aliphatic carbonyl compounds. Org. Biomol. Chem. 2003, 1, 1906–1908. [Google Scholar] [CrossRef]
- Nenajdenko, V.G.; Varseev, G.N.; Korotchenko, V.N.; Shastin, A.V.; Balenkova, E.S. Reaction of CBrF2-CBrF2 with hydrazones of aromatic aldehydes. Novel efficient synthesis of fluorocontaining alkanes, alkenes and alkynes. J. Fluor. Chem. 2004, 125, 1339–1345. [Google Scholar] [CrossRef]
- Nenajdenko, V.G.; Shastin, A.V.; Korotchenko, V.N.; Varseev, G.N.; Balenkova, E.S. A novel approach to 2-chloro-2-fluorostyrenes. Eur. J. Org. Chem. 2003, 2003, 302–308. [Google Scholar] [CrossRef]
- Hirotaki, K.; Kawazoe, G.; Hanamoto, T. Facile synthesis of (E)-β-(trifluoromethyl)styrenes from halothane (HCFC-123B1). J. Fluor. Chem. 2015, 171, 169–173. [Google Scholar] [CrossRef]
- Korotchenko, V.N.; Shastin, A.V.; Nenajdenko, V.G.; Balenkova, E.S. A novel approach to fluoro-containing alkenes. Tetrahedron 2001, 57, 7519–7527. [Google Scholar] [CrossRef]
- Gribble, G.W. Leimgruber–Batcho indole synthesis. In Indole Ring Synthesis; Gribble, G.W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Muzalevskiy, V.M.; Shastin, A.V.; Balenkova, E.S.; Haufe, G.; Nenajdenko, V.G. New approaches to the synthesis of 2-(trifluoromethyl)indole and 2-amino-3-(trifluoromethyl)quinoline. Russ. Chem. Bull. 2008, 57, 2217–2219. [Google Scholar] [CrossRef]
- Egorova, K.S.; Ananikov, V.P. Toxicity of metal compounds: Knowledge and myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef] [Green Version]
- Marien, N.; Reddy, B.N.; De Vleeschouwer, F.; Goderis, S.; Van Hecke, K.; Verniest, G. Metal-Free Cyclization of orto-nitroaryl ynamides and ynamines towards spiropseudoindoxyls. Angew. Chem. Int. Ed. 2018, 57, 5660–5664, [Angew. Chem. 2018, 130, 5762–5766]. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Ramana, C.V. Divergent Pd(II) and Au(III) mediated nitroalkynol cycloisomerizations. Org. Biomol. Chem. 2011, 9, 7327–7334. [Google Scholar] [CrossRef]
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. [Google Scholar] [CrossRef] [PubMed]
- Beltrá, J.; Gimeno, M.C.; Herrera, R.P. A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein J. Org. Chem. 2014, 10, 2206–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotha, S.; Cheekatla, S.R.; Chinnam, A.K.; Jain, T. Design and synthesis of polycyclic bisindoles via Fischer indolization and ring-closing metathesis as key steps. Tetrahedron Lett. 2016, 57, 5605–5607. [Google Scholar] [CrossRef]
- Chantana, C.; Sirion, U.; Iawsipo, P.; Jaratjaroonphong, J. Short total synthesis of (±)-gelliusine E and 2,3′-bis(indolyl)ethylamines via PTSA-catalyzed transindolylation. J. Org. Chem. 2021, 86, 13360–13370. [Google Scholar] [CrossRef]
- Maciejewska, D.; Niemyjska, M.; Wolska, I.; Włostowski, M.; Rasztawicka, M. Synthesis, spectroscopic studies and crystal structure of 5,5′-dimethoxy-3,3′-methanediyl-bis-indole as the inhibitor of cell proliferation of human tumors. Z. Naturforsch. B 2004, 59, 1137–1142. [Google Scholar] [CrossRef]
- Lee, C.-H.; Yao, C.-F.; Huang, S.-M.; Ko, S.; Tan, Y.-H.; Lee-Chen, G.-J.; Wang, Y.-C. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 2008, 113, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett. 2008, 269, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.C.; Crowley-Nowick, P.; Bradlow, H.L.; Sepkovic, D.W.; Schmidt-Grimminger, D.; Howell, P.; Mayeaux, E.J.; Tucker, A.; Turbat-Herrera, E.A.; Mathis, J.M. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol. Oncol. 2000, 78, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.; Firestone, G.L.; Bjeldanes, L.F. Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol. 2002, 63, 1085–1097. [Google Scholar] [CrossRef]
- Le, H.T.; Schaldach, C.M.; Firestone, G.L.; Bjeldanes, L.F. Plant-derived 3,3′-Diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J. Biol. Chem. 2003, 278, 21136–21145. [Google Scholar] [CrossRef] [Green Version]
- Pindur, U.; Lemster, T. Advances in marine natural products of the indole and annelated indole. Curr. Med. Chem. 2001, 8, 1681–1698. [Google Scholar] [CrossRef]
- Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev. 2010, 110, 4489–4497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veluri, R.; Oka, I.; Wagner-Döbler, I.; Laatsch, H. New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio2491. J. Nat. Prod. 2003, 66, 1520–1523. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-W.; Zhang, X.-G.; Zhong, P.; Hu, M.-L. Efficient one-pot synthesis of 2-chloro-1,1,1-trifluoro-2-alkenes under solvent-free conditions. Synth. Commun. 2009, 39, 756–763. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Shastin, A.V.; Balenkova, E.S.; Nenajdenko, V.G. New approach to the synthesis of trifluoromethylvinyl sulfides. Russ. Chem. Bull. 2007, 56, 1526–1533. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzalevskiy, V.M.; Sizova, Z.A.; Abaev, V.T.; Nenajdenko, V.G. An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules 2021, 26, 7365. https://doi.org/10.3390/molecules26237365
Muzalevskiy VM, Sizova ZA, Abaev VT, Nenajdenko VG. An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules. 2021; 26(23):7365. https://doi.org/10.3390/molecules26237365
Chicago/Turabian StyleMuzalevskiy, Vasiliy M., Zoia A. Sizova, Vladimir T. Abaev, and Valentine G. Nenajdenko. 2021. "An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes" Molecules 26, no. 23: 7365. https://doi.org/10.3390/molecules26237365
APA StyleMuzalevskiy, V. M., Sizova, Z. A., Abaev, V. T., & Nenajdenko, V. G. (2021). An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules, 26(23), 7365. https://doi.org/10.3390/molecules26237365