An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of β-Carotene/2-Hydroxypropyl-β-Cyclodextrin Aggregate
3.3. Determination of Content of β-Carotene in CAR/HP-CD Aggregate
3.4. Raman Spectroscopy Measurements
3.5. Relative Stability of Encapsulated β-Carotene
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Melendez-Martinez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melendez-Martinez, A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccardi, V.; Arosio, B.; Cari, L.; Bastiani, P.; Scamosci, M.; Casati, M.; Ferri, E.; Bertag noli, L.; Ciccone, S.; Rossi, P.D.; et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age. Eur. J. Nutr. 2020, 59, 119–126. [Google Scholar] [CrossRef]
- Chen, Q.H.; Wu, B.K.; Pan, D.; Sang, L.X.; Chang, B. Beta-Carotene and its protective effect on gastric cancer. World J. Clin. Cases 2021, 9, 6591–6607. [Google Scholar] [CrossRef]
- Yusuf, I.F.; Lesmana, R.; Goenawan, H.; Achadiyani, A.; Khairani, A.F.; Fatimamah, S.N. The roles of β-carotene in cardiomyocytes. Curr. Nutr. Food Sci. 2021, 17, 673–678. [Google Scholar] [CrossRef]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; Spijkerman, A.M.W.; van der Schow, Y.T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.G.; Borge, G.I.A.; Kljak, K.; Mandic, A.I.; Mapelli-Brahm, P.; Olmedilla-Alonso, B.; Pintea, A.M.; Ravasco, F.; Tumbas Šaponjac, V.; Sereikaite, J.; et al. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021, 10, 912. [Google Scholar] [CrossRef]
- Sliwka, H.-R.; Partali, V.; Lockwood, S.F. Hydrophilic carotenoids: Carotenoid aggregates. In Carotenoids—Physical, Chemical and Biological Functions and Properties; Landrum, J.T., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 31–58. [Google Scholar]
- Soukoulis, C.; Bohn, T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–36. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Böhm, V.; Borge, G.I.A.; Cano, M.P.; Fikselová, M.; Gruskiene, R.; Lavelli, V.; Loizzo, M.R.; Mandic, A.I.; Brahm, P.M.; et al. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu. Rev. Food Sci. Technol. 2021, 12, 433–460. [Google Scholar] [CrossRef] [PubMed]
- Horn, D.; Rieger, J. Organic nanoparticles in the aqueous phase—Theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40, 4330–4361. [Google Scholar] [CrossRef]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Supramolecular carotenoid complexes of enhanced solubility and stability—The way of bioavailability improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naess, S.N.; Sliwka, H.-R.; Partali, V.; Melo, T.B.; Naqvi, K.R.; Jackson, H.L.; Lockwood, S.F. Hudrophilic carotenoids: Surface properties and aggregation of an astaxanthin-lysine conjugate, a rigid, long-chain, highly unsaturated and highly water-soluble tetracationic bolaamphiphile. Chem. Phys. Lipids 2007, 148, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hada, M.; Nagy, V.; Deli, J.; Agocs, A. Hydrophilic carotenoids: Recent progress. Molecules 2012, 17, 5003–5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, C.; Buera, P.; Mazzobre, F. Novel trends in cyclodextrins encapsulation. Application in food science. Curr. Opin. Food Sci. 2017, 16, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Fenyvesi, E.; Vikmon, M.; Szente, L. Cyclodextrins in food technology and human nutrition: Benefits and limitations. Crit. Rev. Food Sci. Nutr. 2016, 56, 1981–2004. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, C.A.; Baron-Cangrejo, O.G.; Salgado-Rivera, P.A. Encapsulation of carotenoids as food colorants via formation of cyclodextrin inclusion complexes: A review. Polysaccharides 2021, 2, 454–476. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhu, H.; Wang, S.; Xing, J. Inclusion complexes of lycopene and β-cyclodextrin: Preparation, characterization, stability and antioxidant activity. Antioxidants 2019, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Zaibunnisa, A.H.; Aini Marhanna, M.N.A.; Ainun Atirah, M. Characterization and solubility study of γ-cyclodextrin and β-carotene complex. Int. Food Res. J. 2011, 18, 1061–1065. [Google Scholar]
- Yuan, C.; Jin, Z.; Xu, X. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym. 2012, 89, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Blanch, G.P.; del Castillo, M.L.R.; del Mar Caja, M.; Perez-Mendez, M.; Sanchez-Cortes, S. Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins. Food Chem. 2007, 105, 1335–1341. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Jin, Z.; Xu, X.; Zhuang, H.; Shen, W. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem. 2008, 109, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Fortier, N.E. Fat Substitutes Containing Water Soluble Beta-Carotene. Available online: https://patents.google.com/patent/US5532009A/en (accessed on 27 September 2021).
- Kaur, M.; Bawa, M.; Singh, M. β-Carotene-β-cyclodextrin inclusion complex: Towards enhanced aqueous solubility. J. Glob. Biosci. 2016, 5, 3665–3675. [Google Scholar]
- Kim, J.-Y.; Seo, T.-R.; Lim, S.-T. Preparation of aqueous dispertion of β-carotene nano-composites through complex formation with starch dextrin. Food Hydrocoll. 2013, 33, 256–263. [Google Scholar] [CrossRef]
- Lockwood, S.F.; O’Malley, S.; Mosher, G.L. Improved aqueous solubility of crystalline astaxanthin (3,3′-dihydroxy-β, β-carotene-4,4′-dione) by Captisol® (sulfobutyl ether β-cyclodextrin). J. Pharm. Sci. 2003, 92, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Basu, H.N.; Del Vecchio, A. Encapsulated carotenoid preparations from high-carotenoid canola oil and cyclodextrins and their stability. JAOCS 2001, 78, 375–380. [Google Scholar] [CrossRef]
- Liang, R.; Huang, Q.; Ma, J.; Shoemaker, C.F.; Zhong, F. Effect of relative humidity on the store stability of spray-dried beta-carotene. Food Hydrocoll. 2013, 33, 225–233. [Google Scholar] [CrossRef]
- de Lima Petito, N.; da Silva Dias, D.; Costa, V.G.; Falcao, D.Q.; de Lima Araujo, K.G. Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem. 2016, 208, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Stutz, H.; Bresgen, N.; Eckl, P.M. Analytical tools for the analysis of β-carotene and its degradation products. Free Radic. Res. 2016, 49, 650–680. [Google Scholar] [CrossRef] [Green Version]
- Varzakas, T.; Kiokas, S. HPLC analysis and determination of carotenoid pigments in commercially available plant extracts. Curr. Res. Nutr. Food Sci. 2016, 4 (Special Issue 1), 1–14. [Google Scholar] [CrossRef]
- Craft, N.E.; Soares, J.H. Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. J. Agric. Food Chem. 1992, 40, 431–434. [Google Scholar] [CrossRef]
- Henry, L.K.; Catignani, G.L.; Schwartz, S.J. Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. JAOCS. 1998, 75, 823–829. [Google Scholar] [CrossRef]
- Ryzhakov, A.; Thi, T.D.; Stappaerts, J.; Bertoletti, L.; Kimpe, K.; Sa Couto, A.R.; Saokham, P.; van den Mooter, G.; Augustijns, P.; Somsen, G.W.; et al. Self-assembly of cyclodextrins and their complexes in aqueous solutions. J. Pharm. Sci. 2016, 105, 2556–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa Couto, A.R.; Ryzhakov, A.; Loftsson, T. 2-Hydroxypropyl-β-cyclodextrin aggregates: Identification and development of analytical techniques. Materials 2018, 11, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muankaew, C.; Saokham, P.; Jansook, P.; Loftsson, T. Self-assembly of cyclodextrin complexes: Detection, obstacles and benefits. Pharmazie 2020, 75, 307–312. [Google Scholar] [PubMed]
- Bikadi, Z.; Kurdi, R.; Balogh, S.; Szeman, J.; Hazai, E. Aggregation of cyclodextrins as an important factor to determine their complexation behavior. Chem. Biodivers. 2006, 3, 1266–1278. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Tasumi, M. Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J. Raman Spectrosc. 1983, 14, 310–321. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Zhang, F.; Zou, X.; Holmes, M.; Zhang, W.; Huang, X.; Cui, X.; Xue, J. Determination of retrogradation degree in starch by mid-infrared and Raman spectroscopy during storage. Food Anal. Methods 2017, 10, 3694–3705. [Google Scholar] [CrossRef]
- De Oliveira, V.E.; Almeida, E.W.C.; Castro, H.V.; Edwards, H.G.M.; Dos Santos, H.F.; de Oliveira, L.F. Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J. Phys. Chem. A 2011, 115, 8511–8519. [Google Scholar] [CrossRef] [PubMed]
- Somer, A.; Roik, J.R.; Ribeiro, M.A.; Urban, A.M.; Schoeffel, A.; Urban, V.M.; Farago, P.V.; de Castro, L.V.; Sato, F.; Jacinto, C.; et al. Nystatin complexation with β-cyclodextrin: Spectroscopic evaluation of inclusion by FT-Raman, photoacoustic spectroscopy, and 1H NMR. Mater. Chem. Phys. 2020, 239, 122117. [Google Scholar] [CrossRef]
- Niu, H.; Chen, W.; Chen, W.; Yun, Y.; Zhong, Q.; Fu, X.; Chen, H.; Liu, G. Preparation and characterization of a modified-β-cyclodextrin/β-carotene inclusion complex and its application in Pickering emulsions. J. Agric. Food Chem. 2019, 67, 12875–12884. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, R.; Guo, Z.; Li, C.; Li, P. The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chem. 2007, 101, 1580–1584. [Google Scholar] [CrossRef]
- Gomes, L.M.M.; Petito, N.; Costa, V.G.; Falcao, D.Q.; de Lima Araujo, K.G. Inclusion complexes of red bell pepper pigment with β-cyclodextrin: Preparation, characterization and application as natural colorant in yogurt. Food Chem. 2014, 148, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Corte-Real, J.; Iddir, M.; Soukoulis, C.; Richling, E.; Hoffmann, L.; Bohn, T. Effect of divalent minerals on the bioaccessibility of pure carotenoids and on physical properties of gastro-intestinal fluids. Food Chem. 2016, 197, 546–553. [Google Scholar] [CrossRef] [PubMed]
No | Description of the Adopted Methods | References |
---|---|---|
1 | 1 mL of the aggregate water dispersion was mixed with 2 mL of ethanol and 3 mL of n-hexane and shaken for 15 min, 30 °C, 650 rpm. Subsequently, the mixture was ultrasonicated for 10 min and repeatedly shaken for 60 min, 30 °C, 650 rpm, or 120 min, 30 °C, 650 rpm. | [24] |
2 | 1 mL of the aggregate water dispersion was mixed with 2 mL of ethanol and 3 mL of n-hexane and ultrasonicated for 2 min three times. | [24] |
3 | 1 mL of the aggregates water dispersion was heated for 15 min at 70 °C, then mixed with 1 mL of cyclohexane for 3 min by shaking and ultrasonicated for 2 min. | [25] |
4 | 1 mL of the aggregate water dispersion was heated for 15 min at 70 °C, then mixed with 1 mL of cyclohexane for 3 min by shaking. | [25] |
5 | 1 mL of the aggregate water dispersion was mixed with 2 mL of dichloromethane for 1 min by shaking and centrifuged for 10 min, 290× g | [26] |
6 | 1 mL of the aggregate water dispersion was mixed with 2 mL of acetone and 2 mL of n-hexane. | [27] |
7 | 1 mL of the aggregate water dispersion was mixed with 9 mL of dimethyl sulfoxide for 3 min by shaking. Subsequently, the mixture was mixed with 1 mL of n-hexane and 4 mL of dichloromethane, shaken for 10 min, 25 °C, 650 rpm, and centrifuged for 10 min, 3000× g | [28] |
8 | The dry aggregates were dissolved in a mixture of ethanol and acetonitrile (5:1), ultrasonicated for 10 min, centrifuged for 5 min, 18 °C, 10,400× g | [29] |
Solvent | CAR Solubility, mg/L [32] | Temperature of Reaction, °C | Concentration of Entrapped CAR, µg/mL 1,2 |
---|---|---|---|
Acetone | 200 | 65 | 0.83 |
Dichloromethane | 6000 | 47 | 0.02 |
Hexane | 600 | 76 | 0.04 |
Ethanol | 30 | 87 | 0.01 |
Temperature, °C | CAR Concentration in Aggregates, µg/mL 1,2 | |||
---|---|---|---|---|
0.5% HP-CD | 5 % HP-CD | 25% HP-CD | 50% HP-CD | |
65 | 0.11 | 0.83 | 2.21 | 0.75 |
75 | - | 0.17 | - | - |
80 | - | 0.07 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celitan, E.; Gruskiene, R.; Sereikaite, J. An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions. Molecules 2021, 26, 7562. https://doi.org/10.3390/molecules26247562
Celitan E, Gruskiene R, Sereikaite J. An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions. Molecules. 2021; 26(24):7562. https://doi.org/10.3390/molecules26247562
Chicago/Turabian StyleCelitan, Enrika, Ruta Gruskiene, and Jolanta Sereikaite. 2021. "An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions" Molecules 26, no. 24: 7562. https://doi.org/10.3390/molecules26247562
APA StyleCelitan, E., Gruskiene, R., & Sereikaite, J. (2021). An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions. Molecules, 26(24), 7562. https://doi.org/10.3390/molecules26247562