The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes of the Analysed Parameters Occurring during the Fermentation Process
2.2. Changes of Analysed Parameters during Storage under Refrigerated Conditions
2.3. Changes of Analysed Parameters during Storage at Room Temperature
3. Materials and Methods
3.1. Grape Vinegars Preparation
3.2. Storage
3.3. Determination of Total Antioxidant Activity
3.4. Determination of the Total Phenolic Content (TPC)
3.5. Determination of the Total Flavonoid Content (TFC)
3.6. Determination of pH
3.7. Determination of Soluble Solids
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, W. Vinegar. In Food, Fermentation and Micro-Organisms; Blachwell Science: Oxford, UK, 2005; pp. 154–159. [Google Scholar]
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Garcia- Parilla, M.; Torija, M.; Mas, A.; Cerezo, A.; Troncoso, A. Vinegars and Other Fermented Condiments. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villalenga, C., Penas, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–587. [Google Scholar]
- Vinegar and Substitutes for Vinegar from Acetic Acid (HS: 220900) Product Trade, Exporters and Importers|OEC-The Observatory of Economic Complexity. Available online: https://oec.world/en/profile/hs92/vinegar-and-substitutes-for-vinegar-from-acetic-acid (accessed on 16 February 2021).
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32013R1308 (accessed on 2 October 2021).
- Kunicka-Styczynska, A.; Czyzowska, A.; Rajkowska, K.; Wilkowska, A.; Dziugan, P. The Trends and Prospects of Winemaking in Poland. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: London, UK, 2016; pp. 401–413. [Google Scholar]
- Wino-Krajowy Ośrodek Wsparcia Rolnictwa. Available online: https://www.kowr.gov.pl/interwencja/wino (accessed on 28 November 2021). (In Polish)
- Mietton-Peuchota, M.; Milisica, V.; Noilet, P. Grape must concentration by using reverse osmosis. Comparison with chaptalization. Desalination 2002, 148, 125–129. [Google Scholar] [CrossRef]
- Jackson, R. Wine Science. Principles and Applications, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-373646-8. [Google Scholar]
- Joyeux, A.; Lafon-Lafourcade, S.; Ribereau-Gayon, P. Evolution of acetic acidbacteria during fermentation and storage of wine. Appl. Environ. Microbiol. 1984, 1, 5–20. [Google Scholar]
- Gomes, R.J.; Borges, M.d.F.; Rosa, M.d.F.; Castro-Gómez, R.J.H.; Spinosa, W.A. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 2018, 56, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Barrao, C.; Benagli, C.; Chappuis, M.; Ortega Pérez, R.; Tonolla, M.; Barja, F. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst. Appl. Microbiol. 2013, 36, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; De Vero, L.; Giudici, P. Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl. Environ. Microbiol. 2009, 75, 2585–2589. [Google Scholar] [CrossRef] [Green Version]
- König, H.; Claus, H. A Future Place for Saccharomyces Mixtures and Hybrids in Wine Making. Fermentation 2018, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Bolaños, J.L. Improving traditional fermented beverages: How to evolve from spontaneous to directed fermentation. Eng. Life Sci. 2012, 12, 410–418. [Google Scholar] [CrossRef]
- Hailu, S.; Admassu, S.; Jha, K. Vinegar Production Technology—An Overview. Beverage Food World 2012, 29–32. [Google Scholar]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Piórecki, N. Bioactive compounds in cornelian cherry vinegars. Molecules 2018, 23, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battcock, M.; Azam- Ali, S. Fermented Frutis and Vegetables. A global Perspective; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 134. [Google Scholar]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Motarjemi, Y. Impact of small scale fermentation technology on food safety in developing countries. Int. J. Food Microbiol. 2002, 75, 213–229. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Venâncio, A.; Lima, N.; Guilloux-Bénatier, M.; Rousseaux, S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res. Int. 2018, 103, 478–491. [Google Scholar] [CrossRef] [Green Version]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Combina, M.; Elía, A.; Mercado, L.; Catania, C.; Ganga, A.; Martinez, C. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int. J. Food Microbiol. 2005, 99, 237–243. [Google Scholar] [CrossRef]
- Holešinský, R.; Průšová, B.; Baroň, M.; Fiala, J.; Kubizniakova, P.; Paulíček, V.; Sochor, J. Spontaneous fermentation in wine production as a controllable technology. Potravin. Slovak J. Food Sci. 2020, 14, 692–703. [Google Scholar] [CrossRef]
- Vikas Bhat, S.; Akhtar, R.; Amin, T. An Overview on the Biological Production of Vinegar. Int. J. Fermented Foods 2014, 3, 139–155. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, C.; Esteban-Díez, I.; Sáenz-González, C.; González-Sáiz, J.M. Vinegar classification based on feature extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses: A feasibility study. Anal. Chim. Acta 2008, 608, 38–47. [Google Scholar] [CrossRef]
- Mas, A.; Torija, M.J.; García-Parrilla, M.D.C.; Troncoso, A.M. Acetic acid bacteria and the production and quality of wine vinegar. Sci. World J. 2014, 2014, 394671. [Google Scholar] [CrossRef]
- Badimon, L.; Chagas, P.; Chiva-Blanch, G. Diet and Cardiovascular Disease: Effects of Foods and Nutrients in Classical and Emerging Cardiovascular Risk Factors. Curr. Med. Chem. 2017, 26, 3639–3651. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and cardiovascular health. Int. J. Mol. Sci. 2018, 19, 3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stradling, C.; Hamid, M.; Fisher, K.; Taheri, S.; Thomas, G. A Review of Dietary Influences on Cardiovascular Health: Part 1: The role of Dietary Nutrients. Cardiovasc. Hematol. Disord. Targets 2014, 13, 208–230. [Google Scholar] [CrossRef]
- Nishidai, S.; Nakamura, Y.; Torikai, K.; Yamamoto, M.; Ishihara, N.; Mori, H.; Ohigashi, H. Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Biosci. Biotechnol. Biochem. 2000, 64, 1909–1914. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phyther. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm. Biol. 2016, 54, 260–265. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, C.-H.; Liang, M.-T.; Gao, Z.-J.; Wu, Y.-W.; Chuang, L.-Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, E.; Genisheva, Z.; Oliveira, J.M.; Teixeira, J.A.; Domingues, L. Vinegar production from fruit concentrates: Effect on volatile composition and antioxidant activity. J. Food Sci. Technol. 2017, 54, 4112–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic effects of vinegar: A review. Curr. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Koyama, M.; Ogasawara, Y.; Endou, K.; Akano, H.; Nakajima, T.; Aoyama, T.; Nakamura, K. Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar. Int. J. Food Prop. 2017, 20, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Rasines-Perea, Z.; Teissedre, P.L. Grape Polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Elcoroaristizabal, S.; Ocaña-González, J.A.; García-González, D.L.; Amigo, J.M.; Callejón, R.M. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chem. 2017, 230, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Davies, C.V.; Gerard, L.M.; Ferreyra, M.M.; Schvab, M.D.C.; Solda, C.A. Bioactive compounds and antioxidant activity analysis during orange vinegar production. Food Sci. Technol. 2017, 37, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Colombo, F.; Di Lorenzo, C.; Regazzoni, L.; Fumagalli, M.; Sangiovanni, E.; Peres De Sousa, L.; Bavaresco, L.; Tomasi, D.; Bosso, A.; Aldini, G.; et al. Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food Funct. 2019, 10, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.L.; Tesfaye, W.; Carmen García-Parrilla, M.; Casas, J.A.; Troncoso, A.M. Evolution of the aroma profile of sherry wine vinegars during an experimental aging in wood. J. Agric. Food Chem. 2002, 50, 3173–3178. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H. Bin Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H. Bin Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C.G. How fermentation affects the antioxidant properties of cereals and legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.A.; Arruda, H.S.; Pastore, G.M. Modification and validation of Folin-Ciocalteu assay for faster and safer analysis of total phenolic content in food samples. Brazilian J. Food Res. 2018, 9, 125. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Bertelli, D.; Maietti, A.; Papotti, G.; Tedeschi, P.; Bonetti, G.; Graziosi, R.; Brandolini, V.; Plessi, M. Antioxidant Activity, Phenolic Compounds, and NMR Characterization of Balsamic and Traditional Balsamic Vinegar of Modena. Food Anal. Methods 2015, 8, 371–379. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Thai, H.N.; Camp, J.V.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Liu, N.; Song, M.; Wang, N.; Wang, Y.; Wang, R.; An, X.; Jingwei, Q. The effects of solid-state fermentation on the content, composition and in vitro antioxidant activity of flavonoids from dandelion. PLoS ONE 2020, 15, e0239076. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, Z.T. Total titratable acidity and organic acids of wines produced from cactus pear (Opuntia-ficus-indica) fruit and Lantana camara (L. Camara) fruit blended fermentation process employed response surface optimization. Food Sci. Nutr. 2020, 8, 4449–4462. [Google Scholar] [CrossRef]
- Bozdemir, M.; Altan Kamer, D.D.; Akgül, G.; Gümüş, T. Some physicochemical and functional properties of vinegar produced from different raw materials. J. Tekirdag Agric. Fac. 2021, 18, 32–44. [Google Scholar] [CrossRef]
- Kang, M.; Ha, J.H.; Lee, Y. Physicochemical properties, antioxidant activities and sensory characteristics of commercial gape vinegars during long-term storage. Food Sci. Technol. 2020, 40, 909–916. [Google Scholar] [CrossRef]
- Aldrete-Tapia, J.A.; Miranda-Castilleja, D.E.; Arvizu-Medrano, S.M.; Hernández-Iturriaga, M. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media. J. Food Sci. 2018, 83, 419–423. [Google Scholar] [CrossRef]
- Tesfaye, W.; Carmen Garcia-Parrilla, M.; Lourdes Morales, M.; del Carmen García-Parrilla, M.; Troncoso, A.M.; de Nutrición Bromatología, Á. Optimising wine vinegar production: Fermentation and ageing. Appl. Biotechnol. Food Sci. Policy 2003, 1, 109–114. [Google Scholar]
- Xie, X.; Zheng, Y.; Liu, X.; Cheng, C.; Zhang, X.; Xia, T.; Yu, S.; Wang, M. Antioxidant Activity of Chinese Shanxi Aged Vinegar and Its Correlation with Polyphenols and Flavonoids during the Brewing Process. J. Food Sci. 2017, 82, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Chanivet, M.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Suitability of alternative wood types other than American oak wood for the ageing of Sherry vinegar. Food Chem. 2020, 316, 126386. [Google Scholar] [CrossRef]
- Casale, M.; Sáiz Abajo, M.J.; González Sáiz, J.M.; Pizarro, C.; Forina, M. Study of the aging and oxidation processes of vinegar samples from different origins during storage by near-infrared spectroscopy. Proc. Analytica Chimica Acta 2006, 557, 360–366. [Google Scholar] [CrossRef]
- Solieri, L.; Giudici, P. Vinegars of the World. In Vinegars of the World; Springer: Milano, Italy, 2009; pp. 1–16. [Google Scholar]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Valero, A.; Marín, S.; Ramos, A.J.; Sanchis, V. Survey: Ochratoxin A in European special wines. Food Chem. 2008, 108, 593–599. [Google Scholar] [CrossRef]
- Bellí, N.; Marín, S.; Duaigües, A.; Ramos, A.J.; Sanchis, V. Ochratoxin A in wines, musts and grape juices from Spain. J. Sci. Food Agric. 2004, 84, 591–594. [Google Scholar] [CrossRef]
- Schindhelm, S.; Weber, A.; Andres-Barrao, C.; Schelling, C.; Stchigel, A.M.; Cano, J.; Veuthey, J.L.; Bourgeois, J.; Barja, F. Biochemical and morphological characterization of a new fungal contaminant in balsamic and cider vinegars. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2009, 26, 1306–1313. [Google Scholar] [CrossRef]
- Xu, Q.; Tao, W.; Ao, Z. Antioxidant activity of vinegar melanoidins. Food Chem. 2007, 102, 841–849. [Google Scholar] [CrossRef]
- Dávalos, A.; Bartolomé, B.; Gómez-Cordovés, C. Antioxidant properties of commercial grape juices and vinegars. Food Chem. 2005, 93, 325–330. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, H. Bin Comparison of antioxidant activities of different grape varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andlauer, W.; Stumpf, C.; Fürst, P. Influence of the acetification process on phenolic compounds. J. Agric. Food Chem. 2000, 48, 3533–3536. [Google Scholar] [CrossRef]
- Lugasi, A.; Hóvári, J. Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Nahrung-Food 2003, 47, 79–86. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Darias-Martín, J.J.; Rodríguez, O.; Díaz, E.; Lamuela-Raventós, R.M. Effect of skin contact on the antioxidant phenolics in white wine. Food Chem. 2000, 71, 483–487. [Google Scholar] [CrossRef]
- Rainieri, S.; Zambonelli, C. Organisms Associated with Acetic Acid Bacteria in Vinegar Production. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milan, Italy, 2009; pp. 73–93. [Google Scholar]
- Labbe Pino, M. Tratamientos Postfermentativos del Vinagre: Conservación en Botella, Envejecimiento Acelerado y Eliminación del Plomo; Universidad Rovira i Virgili: Tarragona, Spain, 2007. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Stöckmann, H.; Schwarz, K.; Heinonen, I.M.; Hopia, A.I. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Amer J Enol Viticult 1985, 48, 144–158. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Yuan, C.; Zhang, C.; Wang, P.; Li, Q.; Wan, J.; Chang, H.; Ye, J.; Guo, X.; China, P.R. Comparative Study of Total Flavonoid Contents from the Different Tissues and Varieties of Abelmoschus Esculentus. Int. J. Med. Sci. Biotechnol. 2013, 1, 26–30. [Google Scholar]
Grape Variety | Variant | Time Point (Month) | DPPH (%) | TPC (mg GAE/L) | TFC (mg RE/L) | pH | Soluble Solids (°Brix) |
---|---|---|---|---|---|---|---|
Solaris | A | 1 | 70.13 ± 6.14 | 299.39 ± 13.16 | 214.16 ± 3.08 | 3.13 ± 0.15 | 4.35 ± 0.21 |
2 | 66.31 ± 4.13 | 326.06 ± 5.46 | 303.32 ± 29.96 | 3.21 ± 0.15 | 3.50 ± 0.71 | ||
B | 1 | 68.52 ± 2.56 | 271.51 ± 35.04 | 229.25 ± 17.33 | 3.02 ± 0.06 | 5.60 ± 0.14 | |
2 | 72.46 ± 0.86 | 681.73 ± 14.55 | 298.98± 18.22 | 3.05 ± 0.03 | 5.00 ± 1.41 | ||
Johanniter | A | 1 | 67.42 ± 5.35 | 280.97 ± 17.35 | 211.83 ±17.33 | 3.43 ± 0.04 | 3.05 ± 0.07 |
2 | 55.39 ± 10.79 | 334.58 ± 4.68 | 288.79± 22.84 | 3.52 ± 0.04 | 3.00 ± 0.00 | ||
B | 1 | 66.53 ± 9.99 | 252.90 ± 3.60 | 164.16 ± 10.72 | 3.25 ± 0.14 | 3.30 ± 0.42 | |
2 | 70.98 ± 9.88 | 331.12 ± 8.80 | 309.10 ± 15.02 | 3.23 ± 0.09 | 2.00 ± 1.41 | ||
Souvignier gris | A | 1 | 41.96 ± 4.85 | 275.86 ± 4.73 | 165.58 ± 13.59 | 3.00 ± 0.07 | 4.50 ± 0.27 |
2 | 44.65 ± 0.17 | 308.07 ± 14.44 | 225.92 ± 16.58 | 3.18 ± 0.01 | 3.50 ± 0.00 | ||
B | 1 | 49.58 ± 3.07 | 231.54 ± 3.60 | 170.08 ± 9.30 | 2.96 ± 0.02 | 4.50 ± 0.34 | |
2 | 50.92 ± 0.50 | 312.58 ± 6.71 | 235.56 ± 179.78 | 2.96 ± 0.01 | 3.75 ± 0.35 |
Grape Variety | Fermentation Time [Month] | DPPH | TPC | TFC | pH | Soluble Solids |
---|---|---|---|---|---|---|
Solaris | 1 | ns. | 0.040405 | ns. | 0.000693 | 0.000029 |
2 | 0.000037 | 0.000035 | ns. | 0.000089 | 0.000089 | |
Johanniter | 1 | ns. | 0.000036 | 0.000242 | 0.000032 | 0.008829 |
2 | 0.002010 | ns. | ns. | 0.000032 | 0.000196 | |
Souvignier gris | 1 | 0.002010 | 0.000036 | ns. | 0.004157 | ns. |
2 | 0.000035 | ns. | ns. | 0.000029 | 0.003307 |
Grape Variety | Variant | Time Point (Month) | DPPH (%) | TPC (mg GAE/L) | TFC (mg RE/L) | pH | Soluble Solids (°Brix) |
---|---|---|---|---|---|---|---|
Solaris | A | 0 | 68.78 ± 0.86 | 326.06 ± 5.46 | 303.32 ± 29.96 | 3.2 ± 0.151 | 3.50 ± 0.00 |
1 | 72.78 ± 0.92 | 145.60 ± 0.48 | 89.33 ± 9.83 | 3.32 ± 0.01 | 3.75 ± 0.10 | ||
3 | 61.48 ± 0.44 | 754.02 ± 22.46 | 343.09 ± 29.70 | 3.11 ± 0.04 | 3.75 ± 0.15 | ||
6 | 57.33 ± 0.22 | 664.45 ± 5.49 | 334.51 ± 16.97 | 3.53 ± 0.01 | 3.00 ± 0.10 | ||
B | 0 | 69.43 ±0.49 | 681.73 ± 14.55 | 298.98 ± 18.22 | 3.05 0.03 | 5.00 ± 0.00 | |
1 | 70.28 ± 0.16 | 147.36 ± 0.10 | 77.52 ± 2.69 | 3.26 ± 0.01 | 4.25 ± 0.00 | ||
3 | 64.41 ± 0.29 | 816.38 ± 8.91 | 540.88 ± 43.27 | 3.01 ± 0.01 | 4.50 ± 0.10 | ||
6 | 53.08 ± 7.94 | 727.10 ± 5.53 | 300.74 ± 4.38 | 3.34 ± 0.00 | 3.75 ± 0.15 | ||
Johanniter | A | 0 | 70.18 ± 7.38 | 334.58 ± 4.68 | 288.79 ± 22.84 | 3.52 ± 0.04 | 3.00 ± 0.10 |
1 | 41.72 ± 0.17 | 141.70 ± 0.04 | 78.38 ± 8.62 | 3.28 ± 0.01 | 2.75 ± 0.00 | ||
3 | 75.37 ± 0.20 | 753.76 ± 0.68 | 375.96 ± 14.21 | 3.52 ± 0.01 | 2.75 ± 0.15 | ||
6 | 70.13 ± 3.14 | 1027.48 ± 0.92 | 535.41 ± 58.15 | 3.52 ± 0.01 | 2.00 ± 0.00 | ||
B | 0 | 70.08 ± 2.88 | 331.12 ± 2.88 | 309.10 ± 15.02 | 3.23 ± 0.09 | 2.00 ± 0.20 | |
1 | 82.01 ± 0.06 | 151.72 ± 0.41 | 114.79 ± 24.99 | 3.29 ± 0.04 | 3.50 ± 0.00 | ||
3 | 78.38 ± 4.25 | 972.49 ± 2.02 | 637.48 ± 51.00 | 3.52 ± 0.01 | 3.25 ± 0.00 | ||
6 | 81.83 ± 4.01 | 322.50 ± 4.18 | 271.28 ± 2.10 | 3.50 ± 0.00 | 1.75 ± 0.10 | ||
Souvignier gris | A | 0 | 34.24 ± 0.14 | 308.07 ± 14.44 | 225.92 ± 16.58 | 3.18 ± 0.01 | 3.50 ± 0.00 |
1 | 69.37 ± 0.64 | 145.19 ± 0.08 | 64.24 ± 7.07 | 3.26 ± 0.00 | 2.75 ± 0.10 | ||
3 | 55.33 ± 2.99 | 390.77 ± 43.62 | 245.38 ± 19.63 | 3.31 ± 0.01 | 2.75 ± 0.00 | ||
6 | X | X | X | X | X | ||
B | 0 | 31.92 ± 0.24 | 312.58 ± 6.71 | 235.56 ± 179.78 | 2.96 ± 0.01 | 3.75 ± 0.00 | |
1 | 31.92 ± 0.24 | 149.45 ± 0.04 | 104.57 ± 1.20 | 3.26 ± 0.01 | 4.25 ± 0.20 | ||
3 | X | X | X | X | X | ||
6 | X | X | X | X | X |
Grape Variety | Time Point (Month) | DPPH | TPC | TFC | pH | Soluble Solids |
---|---|---|---|---|---|---|
Solaris | 0 | 0.000037 | 0.000037 | ns. | 0.00011 | 0.00011 |
1 | 0.008114 | 0.008114 | 0.008114 | 0.030348 | 0.030384 | |
3 | 0.005075 | 0.005075 | 0.005075 | 0.043309 | 0.030384 | |
6 | ns. | 0.005075 | 0.005075 | 0.030384 | 0.030384 | |
Johanniter | 0 | 0.001883 | ns. | ns. | 0.000055 | 0.000506 |
1 | 0.008114 | 0.008114 | 0.008114 | ns. | ns. | |
3 | ns. | 0.005075 | 0.005075 | 0.030384 | 0.030384 | |
6 | 0.005075 | 0.005075 | 0.005075 | 0.030384 | 0.030384 | |
Souvignier gris | 0 | 0.000087 | ns. | ns. | 0.000248 | 0.008844 |
1 | 0.005075 | 0.005075 | 0.005075 | ns. | 0.030374 |
Grape Variety | Variant | Time Point (Month) | DPPH (%) | TPC (mg GAE/L) | TFC (mg RE/L) | pH | Soluble Solids (°Brix) |
---|---|---|---|---|---|---|---|
Solaris | A | 0 | 68.19 ± 1.26 | 326.06 ± 5.46 | 303.32 ± 29.96 | 3.21 ± 0.15 | 3.50 ± 0.70 |
1 | 66.66 ± 0.84 | 116.50 ± 0.08 | 86.41 ± 6.91 | 3.25 ± 0.00 | 2.75 ± 0.10 | ||
3 | 57.51 ± 6.03 | 197.05 ± 0.43 | 92.05 ± 7.36 | 7.09 ± 0.01 | 2.00 ± 0.05 | ||
B | 0 | 68.87 ± 0.83 | 681.73 ± 14.55 | 298.98 ± 18.22 | 3.05 ± 0.03 | 5.00 ± 1.40 | |
1 | 71.35 ± 2.65 | 141.64 ± 0.40 | 95.82 ± 5.10 | 3.26 ± 0.01 | 3.75 ± 0.75 | ||
3 | 65.70 ± 0.25 | 295.53 ± 7.35 | 136.15 ± 12.40 | 7.52 ± 0.01 | 2.00 ± 0.15 | ||
Johanniter | A | 0 | 66.59 ± 0.92 | 334.58 ± 4.68 | 288.79 ± 22.84 | 3.52 ± 0.04 | 3.00 ± 0.00 |
1 | 53.61 ± 3.32 | 149.74 ± 0.27 | 98.25 ± 7.86 | 3.25 ± 0.00 | 2.50 ± 1.10 | ||
3 | 44.62 ± 0.72 | 505.47 ± 19.96 | 426.65 ± 34.56 | 4.45 ± 0.01 | 2.25 ± 0.20 | ||
B | 0 | 74.15 ± 6.62 | 331.12 ± 8.80 | 309.10 ± 15.02 | 3.23 ± 0.09 | 2.00 ± 1.41 | |
1 | 73.45 ± 0.11 | 148.25 ± 0.22 | 94.57 ± 7.03 | 3.26 ± 0.00 | 2.75 ± 0.45 | ||
3 | 60.39 ± 1.35 | 822.97 ± 0.12 | 514.55 ± 27.79 | 4.03 ± 0.01 | 2.25 ± 1.00 | ||
Souvignier gris | A | 0 | 67.66 ± 3.23 | 308.07 ± 14.44 | 134.19 ± 16.58 | 3.18 ± 0.01 | 3.50 ± 0.00 |
1 | 69.25 ± 1.00 | 144.79 ± 0.09 | 66.61 ± 5.33 | 3.27 ± 0.00 | 2.50 ± 0.55 | ||
3 | 60.25 ± 0.36 | 600.63 ± 0.55 | 225.92 ± 5.24 | 3.58 ± 0.00 | 2.50 ± 0.25 | ||
B | 0 | 34.22 ± 0.16 | 312.58 ± 6.71 | 235.56 ± 17.78 | 2.96 ± 0.01 | 3.7 ± 0.35 | |
1 | 66.95 ± 3.22 | 139.73 ± 0.51 | 62.86 ± 4.60 | 3.50 ± 0.01 | 2.75 ± 1.05 | ||
3 | 61.92 ± 0.42 | 286.66 ± 5.87 | 166.00 ± 3.48 | 3.54 ± 0.01 | 2.75 ± 0.95 |
Grape Variety | Time Point (Month) | DPPH | TPC | TFC | pH | Soluble Solids |
---|---|---|---|---|---|---|
Solaris | 0 | 0.000037 | 0.000037 | ns. | 0.000110 | 0.000110 |
1 | 0.005075 | 0.005075 | 0.005075 | ns. | 0.030384 | |
3 | 0.005075 | 0.005075 | 0.005075 | 0.03084 | ns. | |
Johanniter | 0 | 0.001883 | ns. | ns. | 0.000055 | 0.000506 |
1 | 0.008114 | 0.008114 | 0.008114 | ns. | ns. | |
3 | 0.005075 | 0.005075 | 0.005075 | 0.030384 | ns. | |
Souvignier gris | 0 | 0.000087 | ns. | ns. | 0.000248 | 0.012165 |
1 | ns. | 0.008114 | 0.008114 | ns. | 0.030384 | |
3 | 0.005075 | 0.005075 | 0.005075 | 0.030384 | ns. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniewicz, J.; Kochman, J.; Jakubczyk, K.; Janda-Milczarek, K. The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars. Molecules 2021, 26, 7616. https://doi.org/10.3390/molecules26247616
Antoniewicz J, Kochman J, Jakubczyk K, Janda-Milczarek K. The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars. Molecules. 2021; 26(24):7616. https://doi.org/10.3390/molecules26247616
Chicago/Turabian StyleAntoniewicz, Justyna, Joanna Kochman, Karolina Jakubczyk, and Katarzyna Janda-Milczarek. 2021. "The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars" Molecules 26, no. 24: 7616. https://doi.org/10.3390/molecules26247616
APA StyleAntoniewicz, J., Kochman, J., Jakubczyk, K., & Janda-Milczarek, K. (2021). The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars. Molecules, 26(24), 7616. https://doi.org/10.3390/molecules26247616