Aroma Properties of Cocoa Fruit Pulp from Different Origins
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Separation and Storage of the Fresh Cocoa Pulp
3.2. Isolation of Volatile Organic Compounds (VOC)
3.3. Comparative Aroma Extract Dilution Analysis (cAEDA)
3.4. Gas Chromatography-Olfactometry (GC-O)
3.5. Gas Chromatography-Mass Spectrometry/Olfactometry (GC-MS/O)
3.6. Stir-Bar Sorptive Extraction Gas Chromatography-Olfactometry/Mass Spectrometry (SBSE-GC-MS/O)
3.7. Headspace Solid-Phase Microextraction Gas Chromatography-Olfactometry/Mass Spectrometry (HS-SPME GC-O/MS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The International Cocoa Organization. ICCO Quarterly Bulletin of Cocoa Statistics; The International Cocoa Organization: Abidjan, Côte d’Ivoire, 2021; Volume XLVIII, No. 1, Cocoa Year 2020/2021. [Google Scholar]
- Prabhakaran Nair, K.P. (Ed.) The Agronomy and Economy of Important Tree Crops of the Developing World, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780123846778. [Google Scholar]
- Vásquez, Z.S.; de Carvalho Neto, D.P.; Pereira, G.V.M.; Vandenberghe, L.P.S.; de Oliveira, P.Z.; Tiburcio, P.B.; Rogez, H.L.G.; Góes Neto, A.; Soccol, C.R. Biotechnological approaches for cocoa waste management: A review. Waste Manag. 2019, 90, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Beyond Beans. Increasing Farmers’ Incomes through Cocoa Juice. Notes from the Field 15/12/2020. Available online: https://mcusercontent.com/5346a1f9420bc321403f32088/files/039cfea8-f64d-4d0b-98ca-4e4b68adc138/Cocoa_Juice_NftF_General.pdf (accessed on 7 October 2021).
- Schwan, R.F.; Wheals, A.E. The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food. Sci. Nutr. 2004, 44, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Pettipher, G.L. Analysis of Cocoa Pulp and the Formulation of a Standardized Artificial Cocoa Pulp Medium. J. Sci. Food Agric. 1986, 37, 297–309. [Google Scholar] [CrossRef]
- Roelofsen, P.A. Fermentation, Drying, and Storage of Cacao Beans. Adv. Food Res. 1958, 8, 225–296. [Google Scholar]
- Afoakwa, E.O. Industrial chocolate manufacture—Processes and factors influencing quality. In Chocolate Science and Technology; Wiley-Blackwell: Oxford, UK, 2010; pp. 35–57. [Google Scholar]
- Schwan, R.F.; Lopez, A.S. Mudanca no perfil da fermentacao de cacau ocasionada pela retirada parcial da polpa da semente. Rev. Theobroma 1988, 18, 247–257. [Google Scholar]
- Bangerter, U.; Beh, B.H.; Callis, A.B.; Pilkington, I.J. Treatment of Cocoa Beans for Improving Fermentation. European Patent 91101882.8, 11 February 1991. [Google Scholar]
- Figueira, A.; Janick, J.; BeMiller, J.N. New Products from Theobroma cacao: Seed Pulp and Pod Gum; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Puerari, C.; Magalhaes, K.T.; Schwan, R.F. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 2012, 48, 634–640. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Filho, A.L.; Veloso Freitas, H.; Rodrigues, S.; Gonçalves Abreua, V.K.; de Oliveira Lemos, T.; Faria Gomes, W.; Narain, N.; Fernandes Pereira, A.L. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Sci. Technol. 2019, 99, 371–378. [Google Scholar] [CrossRef]
- Dias, D.R.; Schwan, R.F.; Freire, E.S.; Serodio, R.D. Elaboration of a fruit wine from cocoa (Theobroma cacao L.) pulp. Int. J. Food Sci. Technol. 2007, 42, 319–329. [Google Scholar] [CrossRef]
- Nunes, C.S.O.; da Silva, M.L.C.; Camilloto, G.P.; Machado, B.A.S.; Hodel, K.V.S.; Koblitz, M.G.B.; Carvalho, G.B.M.; Uetanabaro, A.P.T. Potential Applicability of Cocoa Pulp (Theobroma cacao L.) as an Adjunct for Beer Production. Sci. World J. 2020, 2020, 3192585. [Google Scholar] [CrossRef]
- Nestec, S.A. Foodstuff Products, Ingredients, Processes and Uses. Patent WO2019115735, 13 December 2018. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019115735 (accessed on 27 October 2021).
- Alfred Ritter GmbH & Co. KH. Cacao Y Nada. Available online: https://www.ritter-sport.com/de/cacao-y-nada (accessed on 27 October 2021).
- Lindt und Sprüngli GmbH. EXCELLENCE Cacao Pur|Lindt Deutschland. Available online: https://www.lindt.de/onlineshop/marken/excellence/cacaopur (accessed on 27 October 2021).
- Pino, J.A.; Ceballos, L.; Quijano, C.E. Headspace Volatiles of Theobroma cacao L. Pulp From Colombia. J. Essent. Oil Res. 2010, 22, 113–115. [Google Scholar] [CrossRef]
- Kadow, D.; Bohlmann, J.; Phillips, W.; Lieberei, R. Identification of main fine or flavour components in two genotypes of the cocoa tree (Theobroma cacao L.). J. Appl. Bot. Food Qual. 2013, 86, 90–98. [Google Scholar] [CrossRef]
- Chetschik, I.; Kneubühl, M.; Chatelain, K.; Schlüter, A.; Bernath, K.; Hühn, T. Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. J. Agric. Food Chem. 2018, 66, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Hegmann, E.; Niether, W.; Rohsius, C.; Phillips, W.; Lieberei, R. Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). J. Appl. Bot. Food Qual. 2020, 93, 266–275. [Google Scholar] [CrossRef]
- Biehl, B.; Brunner, E.; Passern, D.; Quesnel, V.C.; Adomako, D. Acidification, proteolysis and flavour potential in fermenting cocoa beans. J. Sci. Food Agric. 1985, 36, 583–598. [Google Scholar] [CrossRef]
- Ziegleder, G. Verfahrenstechnische Einflüsse auf Kakaoaroma (I). Zucker-Und Süsswaren-Wirtsch. 1993, 46, 60–64. [Google Scholar]
- Ziegleder, G. Verfahrenstechnische Einflüsse auf Kakaoaroma. II. Zucker-Und Süsswaren-Wirtsch. 1993, 46, 131–133. [Google Scholar]
- Misnawi; Jinap, S.; Jamilah, B.; Nazamid, S. Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Qual. Prefer. 2004, 15, 403–409. [Google Scholar] [CrossRef]
- Ziegleder, G. Composition of flavor extracts of raw and roasted cocoas. Eur. Food Res. Technol. 1991, 192, 521–525. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de van Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Rusconi, M.; Conti, A. Theobroma cacao L., the Food of the Gods: A scientific approach beyond myths and claims. Pharm. Res. 2010, 61, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.J.R.; Almeida, M.H.; Nout, M.J.R.; Zwietering, M.H. Theobroma cacao L., “The food of the Gods”: Quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food Sci. Nutr. 2011, 51, 731–761. [Google Scholar] [CrossRef] [PubMed]
- Buettner, A.; Schieberle, P. Aroma properties of a homologous series of 2,3-epoxyalkanals and trans-4,5-epoxyalk-2-enals. J. Agric. Food Chem. 2001, 49, 3881–3884. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sevilla, J.F.; Cruz-Rus, E.; Valpuesta, V.; Botella, M.A.; Amaya, I. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC Genom. 2014, 15, 218. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.K.; Elmore, S.; Methven, L. (Eds.) Flavour Development, Analysis and Perception in Food and Beverages; Woodhead Publishing: Cambridge, UK; Waltham, MA, USA; Kidlington, UK, 2015; ISBN 1782421114. [Google Scholar]
- Wessel, M.; Quist-Wessel, P.F. Cocoa production in West Africa, a review and analysis of recent developments. NJAS—Wagening. J. Life Sci. 2015, 74–75, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fowler, M.S. Cocoa Beans: From Tree to Factory. In Industrial Chocolate Manufacture and Use, 4th ed.; Beckett, S.T., Beckett, S.T., Eds.; Wiley-Blackwell: Chichester, UK; Ames, IA, USA, 2009; pp. 10–47. ISBN 9781444301588. [Google Scholar]
- Jahurul, M.; Zaidul, I.; Norulaini, N.; Sahena, F.; Jinap, S.; Azmir, J.; Sharif, K.M.; Omar, A.M. Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics. J. Food Eng. 2013, 117, 467–476. [Google Scholar] [CrossRef]
- Fowler, M.S. Fine or flavour cocoas: Current position and prospects. Cocoa Grow. Bull. 1994, 48, 17–23. [Google Scholar]
- International Cocoa Organization. Fine or Flavor Cocoa. Available online: https://www.icco.org/fine-or-flavor-cocoa/ (accessed on 3 November 2021).
- Ziegleder, G. Linalool contents as characteristic of some flavor grade cocoas. Eur. Food Res. Technol. 1990, 191, 306–309. [Google Scholar] [CrossRef]
- Eskes, A.; Ahnert, D.; Garcia Carrion, L.; Seguine, E.; Assemat, S.; Guarda, D.; Garcia, R. Evidence on the Effect of the Cocoa Pulp Flavour Environment during Fermentation on the Flavour Profile of Chocolates. Improving the profitability of small and medium-sized farms: The principal key to a global sustainbale cocoa economy. In Proceedings of the 17th International Cocoa Research Conference (COPAL), Yaoundé, Cameroun, 15–20 October 2012. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 3rd Rev. ed.; Springer: Berlin, Germany, 2004; ISBN 3540408177. [Google Scholar]
- Balladares, C.; Garca, J.; Chez Guaranda, I.; Prez, S.; Gonzlez, J.; Sosa, D.; Viteri, R.; Barragan, A.; Quijano Aviles, M.; Manzano, P. Physicochemical characterization of Theobroma cacao L. mucilage, in Ecuadorian coast. Emir. J. Food Agric. 2016, 28, 741–745. [Google Scholar] [CrossRef]
- Mashuni; Hamid, F.H.; Muzuni; Kadidae, L.O.; Jahiding, M.; Ahmad, L.O.; Saputra, D. The determination of total phenolic content of cocoa pod husk based on microwave-assisted extraction method. In Proceedings of the 8th International Conference of the Indonesian Chemical Society (ICICS) 2019, Bogor, Indonesia, 6–7 August 2019; p. 30013. [Google Scholar]
- Lee, J.-H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010, 34, 426–444. [Google Scholar] [CrossRef]
- Follana, C. ICCO Panel Recognizes 23 Countries as Fine and Flavour Cocoa Exporters. International Cocoa Organization [Online]. 29 June 2016. Available online: https://www.icco.org/icco-panel-recognizes-23-countries-as-fine-and-flavour-cocoa-exporters/ (accessed on 24 September 2021).
- Febrianto, N.A.; Zhu, F. Diversity in Composition of Bioactive Compounds Among 26 Cocoa Genotypes. J. Agric. Food Chem. 2019, 67, 9501–9509. [Google Scholar] [CrossRef] [PubMed]
- Anita-Sari, I.; Susilo, A.W.; Mawardi, S. Seleksi dan Pemuliaan Kakao; Gadjah Mada University Press: Yogyakarta, Indonesia, 2015. [Google Scholar]
- Hodge, J.E.; Fisher, B.E.; Nelson, E.C. Dicarbonyls, reductones, and heterocyclics produced by reactions of reducing sugars with secondary amine salts. Proc. Ann. Meet. Am. Soc. Brew. Chem. 1963, 21, 84–92. [Google Scholar] [CrossRef]
- Willhalm, B.; Stoll, M.; Thomas, A.F. 2,5-dimethyl-4-hydroxy-2,3-dihydrofuran-3-one. Chem. Ind. 1965, 18, 1629–1630. [Google Scholar]
- Rodin, J.O.; Himel, C.M.; Silverstein, R.M.; Leeper, R.W.; Gortner, W.A. Volatile flavor and aroma components of pineapple. l. Isolation and tentative identification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone. J. Food Sci. 1965, 30, 280–285. [Google Scholar] [CrossRef]
- Schwab, W. 4-hydroxy-3(2H)-furanones: Natural and Maillard products. Recent Res. Dev. Phytochem. 1997, 1, 643–673. [Google Scholar]
- Ohloff, G. Chemie der Geruchs-und Geschmacksstoffe; Springer: Heidelberg, Germany, 1969. [Google Scholar]
- Honkanen, E.; Pyysalo, T.; Hirvi, T. The aroma of finnish wild raspberries, Rubus idaeus, L. Eur. Food Res. Technol. 1980, 171, 180–182. [Google Scholar] [CrossRef]
- Roth, K. The Biochemistry of Peppers; Wiley-VCH Verlag GmbH & Co. HGaA: Weinheim, Germany, 2014. [Google Scholar] [CrossRef]
- Koch, A.; Doyle, C.L.; Matthews, M.A.; Williams, L.E.; Ebeler, S.E. 2-methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochemistry 2010, 71, 2190–2198. [Google Scholar] [CrossRef]
- Johnson, E.S.; Bekele, F.L.; Schnell, R.J. Field Guide to the ICS Clones of Trinidad: Morphological Characterisation of the Cacao Accessions at the International Cocoa Genebank Trinidad (ICGT)—Safeguarding the Local and Regional Cocoa Industry. Available online: https://www.researchgate.net/publication/235456464_Field_Guide_to_the_ICS_Clones_of_Trinidad (accessed on 3 November 2021).
- Motamayor, J.C.; Lachenaud, P.; da Silva e Mota, J.W.; Loor, R.; Kuhn, D.N.; Brown, J.S.; Schnell, R.J. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 2008, 3, e3311. [Google Scholar] [CrossRef] [Green Version]
- Bastos, V.S.; Uekane, T.M.; Bello, N.A.; de Rezende, C.M.; Flosi Paschoalin, V.M.; Del Aguila, E.M. Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. J. Food Sci. Technol. 2019, 56, 2874–2887. [Google Scholar] [CrossRef]
- Statista. Cocoa Production by Country 2019/2020. Available online: https://www.statista.com/statistics/263855/cocoa-bean-production-worldwide-by-region/ (accessed on 14 October 2021).
- Cocoa Producing Countries—Forum Nachhaltiger Kakao. Available online: https://www.kakaoforum.de/en/news-service/country-profiles/cocoa-producing-countries/ (accessed on 14 October 2021).
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Bemelmans, J. (Ed.) Review of Isolation and Concentration Techniques; Applied Science Publishers LTD.: London, UK, 1978. [Google Scholar]
- Grosch, W. Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci. Technol. 1993, 4, 68–73. [Google Scholar] [CrossRef]
- van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; de Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buettner, A.; Schieberle, P. Influence of mastication on the concentrations of aroma volatiles—Some aspects of flavour release and flavour perception. Food Chem. 2000, 71, 347–354. [Google Scholar] [CrossRef]
Retention Index on | FD Factor d | |||||||
---|---|---|---|---|---|---|---|---|
No. a | Odorant b | Odor Quality c | DB-FFAP | DB-5 | Indonesia | Vietnam | Cameroon | Nicaragua |
1 | 2,3-butandione | butter-like | 1008 | 731 | 64 | 16 | 256 | 16 |
2 | methyl 2-methylbutanoate | fruity, banana-like | 1017 | 776 | 4 | 32 | 4 | 4 |
3 | 2,3-pentanedione | butter | 1056 | 706 | 64 | 16 | 256 | 16 |
4 | hexanal | green | 1089 | 802 | 4 | 128 | 32 | 32 |
5 | 3-methylbutyl acetate | fruity | 1118 | 880 | 16 | 16 | <2 | 128 |
6 | δ-carene | green | 1140 | 1014 | 2 | 32 | 8 | 64 |
7 | 3-methylbutanol | malty, roasty | 1200 | 760 | <2 | 32 | <2 | 8 |
8 | 2-heptanone | fruity, flowery | 1207 | 891 | 16 | <2 | 32 | <2 |
9 | (Z)-4-heptenal f | fishy | 1245 | 894 | 32 | 128 | 8 | 32 |
10 | octanal | citrus-like, green | 1280 | 1002 | 256 | 128 | 64 | 64 |
11 | 1-octen-3-one | mushroom-like | 1285 | 978 | 32 | 128 | 16 | 128 |
12 | (E)-2-heptenal | green, flowery | 1311 | 951 | 16 | 32 | 16 | 128 |
13 | 1-hexanol | green, grassy | 1338 | n.d. e | 2 | 128 | 128 | 32 |
14 | 2-acetyl-1-pyrroline f | popcorn-like | 1342 | 930 | 64 | 128 | 128 | 32 |
15 | nonanal | citrus-like, soapy | 1376 | 1106 | 8 | 32 | 32 | 256 |
16 | (E)-2-octenal | fatty, grassy, green | 1417 | 1055 | 128 | 128 | 64 | 128 |
17 | acetic acid | vinegar-like | 1430 | n.d. e | 128 | 128 | 256 | 16 |
18 | 3-(methylthio)propanal | cooked potato-like | 1455 | 903 | 64 | 128 | 64 | 512 |
19 | (E,E)-2,4-heptadienal | fatty, roasty | 1486 | 1020 | 4 | 32 | 128 | 32 |
20 | (Z)-2-nonenal | green, fatty | 1494 | 1140 | 256 | 256 | 128 | 128 |
21 | 2-isobutyl-3-methoxypyrazine | bell pepper -like, earthy | 1510 | 1090 | 2 | 512 | 32 | 4 |
22 | (E)-2-nonenal | fatty, cardboard-like | 1524 | 1164 | <2 | 128 | 128 | <2 |
23 | linalool | flowery | 1539 | 1103 | 32 | 512 | 512 | 512 |
24 | 2-methylpropanoic acid | cheesy | 1562 | 782 | 256 | 128 | 256 | 64 |
25 | (E,Z)-2,6-nonadienal | cucumber-like, fatty | 1574 | 1158 | <2 | 64 | <2 | <2 |
26 | (E)-2-decenal | green, fatty | 1616 | 1252 | 16 | 128 | 64 | 128 |
27 | butanoic acid | cheesy | 1626 | 804 | 128 | 256 | 32 | 4 |
28 | phenylacetaldehyde | flowery, honey-like | 1634 | 1040 | <2 | <2 | <2 | 32 |
29 a/b | 2- and 3-methylbutanoic acid | rancid, cheesy | 1662 | 860 | 1024 | 128 | 128 | 128 |
30 | (E,E)-2,4-nonadienal | fatty, deep fried | 1696 | 1216 | 512 | 256 | 64 | 512 |
31 | 2-acetyl-2-thiazoline f | popcorn-like, roasty | 1747 | n.d. e | 16 | 256 | 32 | <2 |
32 | (E,E)-2,4-decadienal | fatty | 1800 | 1325 | 64 | 128 | 512 | 256 |
33 | ß-damascenone f | fruity, grape-like | 1808 | 1374 | 2 | 256 | 64 | 128 |
34 | geraniol | flowery, earthy | 1841 | 1428 | 64 | 64 | <2 | 16 |
35 | 2-methoxyphenol | smoky, ham-like | 1848 | 1096 | 16 | 64 | 128 | 128 |
36 | ethyl (E,E)-2,4-decadienoate f | metallic, pear-like | 1890 | n.d. e | <2 | 128 | <2 | <2 |
37 | 2-phenylethanol | rose-like, flowery | 1897 | 1110 | 32 | 128 | 128 | 32 |
38 | γ-octalactone | fruity, coconut-like | 1908 | 1154 | <2 | 4 | <2 | <2 |
39 | unknown | metallic | 1920 | n.d. e | <2 | 128 | 128 | <2 |
40 | unknown | metallic | 1947 | 1545 | <2 | 16 | <2 | <2 |
41 | 2-methoxy-4-methylphenol | clove-like, vanilla-like | 1962 | 1198 | <2 | <2 | <2 | 128 |
42 | trans-4,5-epoxy-(E)-2-decenal | metallic | 1994 | 1379 | 1024 | 1024 | 512 | 1024 |
43 | 4-methylhexanoic acid f | sweaty, fishy | 2011 | n.d. e | <2 | 8 | <2 | <2 |
44 | γ-nonalactone | fruity, coconut-like | 2014 | 1364 | 16 | 64 | 256 | 8 |
45 | 4-hydroxy-2,5-dimethyl-3(2H)-furanone | caramel-like | 2026 | 1080 | <2 | 64 | <2 | <2 |
46 | octanoic acid | green, soapy | 2043 | 1180 | <2 | 32 | 4 | <2 |
47 | 4-methylphenol | fecal | 2073 | 1085 | 64 | 32 | 256 | 8 |
48 | δ-nonalactone | fruity, coconut-like | 2084 | 1380 | 32 | 64 | <2 | 128 |
49 | unknown | flowery, earthy | 2103 | n.d. e | 4 | 64 | 32 | 2 |
50 | 2,3-dimethylphenol | phenolic | 2109 | 1200 | 256 | <2 | <2 | <2 |
51 | 4-vinyl-2-methoxyphenol | smoky, clove-like | 2128 | 1326 | 256 | 128 | 512 | 256 |
52 | γ-decalactone | fruity, peach-like | 2133 | 1474 | <2 | 16 | <2 | <2 |
53 | δ-decalactone | coconut-like | 2188 | 1507 | <2 | <2 | 128 | 512 |
54 | 3-hydroxy-4,5-dimethylfuran-2(5H)-one | maggi-like, celery-like | 2194 | 1106 | 16 | 512 | <2 | 128 |
55 | 3-propylphenol | medical | 2247 | 1285 | 64 | 128 | <2 | 256 |
56 | undecanoic acid | soapy, coriander-like | 2323 | 1475 | <2 | 64 | <2 | <2 |
57 | unknown | smoky, phenolic | 2341 | 1345 | <2 | 1024 | <2 | <2 |
58 | γ-dodecalactone | caramel-like, flowery | 2371 | 1667 | 256 | 128 | 32 | 64 |
59 | 4-methoxyphenol | phenolic | 2388 | 1071 | <2 | <2 | <2 | 16 |
60 | δ-dodecalactone | peach-like | 2393 | 1700 | <2 | 16 | <2 | <2 |
61 | coumarin | cinnamon-like | 2435 | 1440 | 256 | <2 | <2 | <2 |
62 | indole | fecal | 2485 | 1320 | 16 | <2 | <2 | <2 |
63 | dodecanoic acid | fatty, wax--like | 2496 | 1574 | <2 | 1024 | <2 | 256 |
64 | unknown | smoky, flowery | 2516 | n.d. e | 64 | 256 | 128 | 16 |
65 | phenylacetic acid | honey-like | 2545 | 1256 | 16 | 128 | 64 | 256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bickel Haase, T.; Schweiggert-Weisz, U.; Ortner, E.; Zorn, H.; Naumann, S. Aroma Properties of Cocoa Fruit Pulp from Different Origins. Molecules 2021, 26, 7618. https://doi.org/10.3390/molecules26247618
Bickel Haase T, Schweiggert-Weisz U, Ortner E, Zorn H, Naumann S. Aroma Properties of Cocoa Fruit Pulp from Different Origins. Molecules. 2021; 26(24):7618. https://doi.org/10.3390/molecules26247618
Chicago/Turabian StyleBickel Haase, Thomas, Ute Schweiggert-Weisz, Eva Ortner, Holger Zorn, and Susanne Naumann. 2021. "Aroma Properties of Cocoa Fruit Pulp from Different Origins" Molecules 26, no. 24: 7618. https://doi.org/10.3390/molecules26247618
APA StyleBickel Haase, T., Schweiggert-Weisz, U., Ortner, E., Zorn, H., & Naumann, S. (2021). Aroma Properties of Cocoa Fruit Pulp from Different Origins. Molecules, 26(24), 7618. https://doi.org/10.3390/molecules26247618