Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VII): Active Principles from Thuja occidentalis L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Antiproliferative Activities of Cupressaceae Plants against MT-1 and MT-2 Cells
2.2. Isolation of Compounds from the Extracts of T. occidentalis
2.3. Determination of Anti-Proliferative Activity
2.4. Apoptosis Analysis
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Materials
3.3. Extraction and Isolation
3.4. Identification of Compounds
3.5. Cell Culture
3.6. Measurement of Anti-Proliferative Effects against MT-1 and MT-2 Cells
3.7. Apoptosis Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ishitsuka, K.; Tamura, K. Treatment of adult T-cell leukemia/lymphoma: Past, present, and future. Eur. J. Haematol. 2008, 80, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, I.; Kubonishi, I.; Sumida, M.; Hiraki, S.; Tsubota, T.; Kimura, I.; Miyamoto, K.; Sato, J. A novel T-cell line derived from adult T-cell leukemia. GANN Jpn. J. Cancer Res. 1980, 71, 155–156. [Google Scholar]
- Miyoshi, I.; Kubonishi, I.; Yoshimoto, S.; Akagi, T.; Ohtsuki, Y.; Shiraishi, Y.; Nagata, K.; Hinuma, Y. Type C virus particles in a cord T-cell line derived by cocultivating normal human cord leukocytes and human leukaemic T cells. Nature 1981, 294, 770–771. [Google Scholar] [CrossRef] [PubMed]
- Kinjo, J.; Nakano, D.; Fujioka, T.; Okabe, H. Screening of promising chemotherapeutic candidates from plants extracts. J. Nat. Med. 2016, 70, 335–360. [Google Scholar] [CrossRef] [Green Version]
- Nakano, D.; Ishitsuka, K.; Hatsuse, T.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates against human adult T-cell leukemia/lymphoma from plants: Active principles structure–activity relationships with withanolides. J. Nat. Med. 2011, 65, 559–567. [Google Scholar] [CrossRef]
- Nakano, D.; Ishitsuka, K.; Katsuya, H.; Kunami, N.; Nogami, R.; Yoshimura, Y.; Matsuda, M.; Kamikawa, M.; Tsuchihashi, R.; Okawa, M.; et al. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (II): Apoptosis of antiproliferactive principle (24,25-dihydrowithanolide D) against ATL cell lines and structure–activity relationships with withanolides isolated from solanaceous plants. J. Nat. Med. 2012, 66, 415–420. [Google Scholar]
- Nakano, D.; Ishitsuka, K.; Takashima, M.; Arima, R.; Satou, A.; Tsuchihashi, R.; Okawa, M.T.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (VI): Cardenolides from Asclepias curassavica. Biol. Pharm. Bull. 2020, 43, 1609–1614. [Google Scholar] [CrossRef]
- Nakano, D.; Ishitsuka, K.; Kamikawa, M.; Matsuda, M.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (III). J. Nat. Med. 2013, 67, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Nakano, D.; Ishitsuka, K.; Mizuki, I.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (IV): Phenanthroindolizidine alkaloids from Tylophora tanakae leaves. J. Nat. Med. 2015, 69, 397–401. [Google Scholar] [CrossRef]
- Nakano, D.; Ishitsuka, K.; Matsuda, N.; Kouguchi, A.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (V): Coumarins and alkaloids from Boenninghausenia japonica and Ruta graveolens. J. Nat. Med. 2017, 71, 170–180. [Google Scholar] [CrossRef]
- Alves, L.D.S.; Figueiredo, C.B.M.; Silva, C.C.A.R.; Marques, G.S.; Ferreira, P.A.; Soares, M.F.R.; Silva, R.M.F.; Rolim-Neto, P.J. Thuja occidentalis L. (Cupressaceae): Review of botanical, phytochemical, pharmacological and toxicological aspects. Int. J. Pharm. Sci. Res. 2014, 5, 1163–1177. [Google Scholar]
- Chang, L.C.; Song, L.L.; Park, E.J.; Luyengi, L.; Lee, K.J.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 2000, 63, 1235–1238. [Google Scholar] [CrossRef]
- Sonia, C.; Alina, C.; Neli, K.O.; Ioan, D.; Anca, H.; Coralia, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, phytochemistry and biological activity. Molecules 2020, 25, 5416. [Google Scholar]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyz, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Torres, A.; Vargas, Y.; Uribe, D.; Carrasco, C.; Torres, C.; Rocha, R.; Oyarzun, C.; Martin, R.S.; Quezada, C. Pro-apoptotic and anti-angiogenic properties of the α/β-thujone fraction from Thuja occidentalis on glioblastoma cells. J. Neurooncol. 2016, 128, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.S.; Nicolau, L.A.D.; Sousa, F.B.M.; de Araújo, S.; Oliveira, A.P.; Araújo, T.S.L.; Souza, L.K.M.; Martins, C.S.; Aquino, P.E.A.; Carvalho, L.L.; et al. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn. in mice. Int. J. Biol. Macromol. 2017, 105, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tian, X.; Fan, P.C.; Zhan, Y.J.; Shen, D.W.; Jin, Y. Separation, determination and identification of the diastereoisomers of podophyllotoxin and its esters by high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2008, 1210, 168–177. [Google Scholar] [CrossRef]
- Muto, N.; Tomokuni, T.; Haramoto, M.; Takemoto, H.; Nakanishi, T.; Inatomi, Y.; Murata, H.; Inada, A. Isolation of apoptosis- and differentiation- inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci. Biotechnol. Biochem. 2008, 72, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Feliciano, A.; Medarde, M.; Lopes, J.L.; Puebla, P.; Miguel del Corral, J.M.; Barrero, A.F. Lignans from Juniperus thurifera. Phytochemistry 1989, 28, 2863–2866. [Google Scholar] [CrossRef]
- Lei, M.; Hu, R.J.; Wang, Y.G. Mild and selective oxidation of alcohols to aldehydes and ketones using NaIO4/TEMPO/NaBr system under acidic conditions. Tetrahedron 2006, 62, 8928–8932. [Google Scholar] [CrossRef]
- Tomioka, K.; Ishiguro, T.; Koga, K. Stereoselective reactions. X. total synthesis of optically pure antitumor lignans, bursran. Chem. Pharm. Bull. 1985, 33, 4333–4337. [Google Scholar] [CrossRef] [Green Version]
- Giordano, T.; Marcelo, F.A.; Fernando, C. Diastereoselective synthesis of b-piperonyl-γ-butyrolactones from morita-baylis-hillman adducts. Highly efficient synthesis of (±)-yatein, (±)-podorhizol and (±)-epi-podorhizol. J. Braz. Chem. Soc. 2010, 21, 2327–2339. [Google Scholar]
- San Feliciano, A.; Miguel del Corral, J.M.; Gordaliza, M.; Castro, A. Lignans from Juniperus sabina. Phytochemistry 1990, 29, 1335–1338. [Google Scholar] [CrossRef]
- Su, W.C.; Fang, J.M.; Cheng, Y.S. Sesquiterpenes from leaves of Cryptomeria japonica. Phytochemistry 1995, 39, 603–607. [Google Scholar]
- Jung, K.Y.; Kim, D.S.; Oh, S.R.; Lee, I.S.; Lee, J.J.; Lee, H.K.; Shin, D.H.; Kim, E.H.; Cheong, C.J. Sesquiterpene components from the flower buds og Magnolia fargesii. Arch. Pharm. Res. 1997, 20, 363–367. [Google Scholar] [CrossRef]
- Goodman, R.A.; Oldfield, E.; Allerhand, A. Assignments in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of chlorophyll and a study of segmental motion in neat phytol. J. Am. Chem. Soc. 1973, 95, 7553–7558. [Google Scholar] [CrossRef]
- Werner, H.; Palaniappan, K. Ent-pimaranes, ent-kauranes, heliangolides and other constituents of three Helianthus species. Phytochemistry 1984, 23, 1453–1459. [Google Scholar]
- Urones, J.G.; Marcos, I.S.; Ferreras, J.F.; Barcala, P.B. Terpenoids from Nepta tuberosa subsp. Reticulata (II). Phytochemistry 1988, 27, 523–526. [Google Scholar] [CrossRef]
- Sakar, M.K.; Er, N.; Ercil, D.; Olmo, E.D.; San Feliciano, A. (−)-Desoxypodophyllotoxin and diterpenoids from juniperus nana willd. berries. Acta. Pharm. Turc. 2002, 44, 213–219. [Google Scholar]
- Xu, J.; Sun, Y.; Wang, M.; Ren, Q.; Li, S.; Wang, H.; Sun, X.; Jin, D.-Q.; Sun, H.; Ohizumi, Y.; et al. Bioactive diterpenoids from the leaves of Callicarpa macrophylla. J. Nat. Prod. 2015, 78, 1563–1569. [Google Scholar] [CrossRef]
- Fraga, M.F.; Hernandez, M.G.; Artega, J.M.; Suarez, S. The microbiological transformation of the diterpenes dehydroabietanol and teideadiol by Mucor plumbeus. Phytochemistry 2003, 63, 663–668. [Google Scholar] [CrossRef]
- Yang, X.W.; Feng, L.; Li, S.M.; Liu, X.H.; Li, Y.L.; Wu, L.; Shen, Y.H.; Tian, J.M.; Zhang, X.; Liu, X.R.; et al. Isolation, structure, and bioactivities of abiesadines A-Y, 25 new diterpenes from Abies georgei Orr. Bioorg. Med. Chem. 2010, 18, 744–754. [Google Scholar] [CrossRef]
- Tanaka, R.; Ohtsu, H.; Matsunaga, S. Abietane diterpene acids and other constituents from the leaves of Larix kaempferi. Phytochemistry 1997, 46, 1051–1057. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef] [PubMed]
- Marcos, L.S.; Cubillo, M.A.; Moro, R.F.; Diez, D.; Basabe, P.; Sanz, F.; Urones, J.G. Synthesis of (+)-totarol. Tetrahedron Lett. 2003, 44, 8831–8835. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhou, H.B.; Zhang, W.D. terpenoids from stems and leaves of Cupressus gigantea. Chin. J. Nat. Med. 2010, 8, 405–410. [Google Scholar] [CrossRef]
- Markham, K.R.; Sheppard, C.; Geiger, H. 13C NMR studies of some naturally occurring amentoflavone and hinokiflavone bioflavonoids. Phytochemstry 1987, 26, 3335–3337. [Google Scholar] [CrossRef]
- Fonseca, F.N.; Ferreira, A.J.S.; Sartorelli, P.; Lopes, N.P.; Floh, E.I.S.; Handro, W.; Kato, M.J. Phenylpropanoid derivatives and biflavones at different stages of differentiation and development of Araucaria angustifolia. Phytochemistry 2000, 55, 575–580. [Google Scholar] [CrossRef]
- Nono, R.N.; Barboni, L.; Teponno, R.B.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; Tapondjou, A.L. Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn.(Melastomataceae). S. Afr. J. Bot. 2014, 93, 19–26. [Google Scholar] [CrossRef]
- Shaheen, F.; Muhanmmad, A.; Rubeena, S.; Irfanullah; Sarah, B. Spectral assignments and reference data. Magn. Reson. Chem. 2001, 39, 399–405. [Google Scholar]
- Moujir, L.M.; Seca, A.M.L.; Araujo, L.; Silva, A.M.S.; Barreto, M.C. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves. Fitoterapia 2011, 82, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.G.; Liliana, A.B.G.; Miguel, A.G. Anti HHV-1 and HHV-2 activity in vitro of abietic and dehydroabietic acid derivatives. Pharmacologyonline 2012, 1, 36–42. [Google Scholar]
- Muhammad, A.; Azhar, R.; Ghulam, H.; Muhammad, A.S.; Muhammad, K.Z.; Haseeb, A.; Iqra, S.; Ammara, R.; Maleeha, M.; Sevki, A.; et al. Ginkgetin: A natural biflavone with versatile pharmacological activities. Food. Chem. Toxicol. 2020, 145, 111642. [Google Scholar]
- Ye, Z.N.; Yu, M.Y.; Kong, L.M.; Wang, W.H.; Yang, Y.F.; Liu, J.Q.; Qiu, M.H.; Li, Y. Biflavone ginkgetin, a novel wnt inhibitor, suppresses the growth of medulloblastoma. Nat. Prod. Bioprospect. 2015, 5, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, H.; Kitoh, Y.; Tsukada, M.; Miki, K.; Koyama, K.; Juliawaty, L.D.; Hakim, E.H.; Takahashi, K.; Kinoshita, K. Inhibitory activities of bioflavonoids against amyloid-b peptide 42 cytotoxicity in PC-12 cells. Bioorganic Med. Chem. Lett. 2015, 25, 2831–2833. [Google Scholar] [CrossRef] [PubMed]
Family | Scientific Name | Parts | EC50 (µg/mL) | |
---|---|---|---|---|
MT-1 | MT-2 | |||
Cupressaceae | Biota orientalis | Leaves | >100 | >100 |
Stems | >100 | >100 | ||
Juniperus chinensis var. kaizuka Hort | Leaves | 43.4 | 61.1 | |
Stems | 18.1 | 10.8 | ||
Juniperus rigida | Leaves | 14.0 | 13.2 | |
Stems | >100 | >100 | ||
Thuja occidentalis | Leaves | 1.65 | 1.38 | |
Stems | 5.51 | 4.21 | ||
Cones | 1.74 | 0.50 | ||
Thujopsis dolabrata | Aerial parts | 2.40 | 0.76 |
Compound | EC50 (µM) | |
---|---|---|
MT-1 | MT-2 | |
1 | 0.115 | 0.134 |
2 | 0.970 | 1.3 |
3 | 0.0058 | 0.0033 |
4 | 0.20 | 0.12 |
5 | 43.7 | 16.5 |
6 | 0.750 | 0.675 |
7 | 9.46 | 7.98 |
8 | 0.611 | 0.175 |
9 | >476 | >476 |
10 | 109 | 118 |
11 | 63.9 | 125 |
12 | 174 | 200 |
13 | >314 | >314 |
14 | 121 | 64.9 |
15 | >301 | 172 |
16 | 142 | 133 |
17 | >301 | >301 |
18 | 109.5 | 30.49 |
19 | 25.8 | 19.2 |
20 | 17.7 | 22.3 |
21 | 103 | 125 |
22 | 119 | 30.0 |
23 | 74.6 | 140.9 |
24 | 228 | 109 |
25 | 88.1 | 135.8 |
26 | 5.26 | 2.45 |
27 | 7.07 | 5.78 |
28 | >172 | >172 |
29 | >172 | >172 |
30 | 8.97 | 9.78 |
31 | >234 | >234 |
32 | >169 | >169 |
doxorubicin | 0.015 | 0.013 |
etoposide | 0.051 | 0.065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, D.; Ishitsuka, K.; Ishihara, M.; Tsuchihashi, R.; Okawa, M.; Tamura, K.; Kinjo, J. Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VII): Active Principles from Thuja occidentalis L. Molecules 2021, 26, 7619. https://doi.org/10.3390/molecules26247619
Nakano D, Ishitsuka K, Ishihara M, Tsuchihashi R, Okawa M, Tamura K, Kinjo J. Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VII): Active Principles from Thuja occidentalis L. Molecules. 2021; 26(24):7619. https://doi.org/10.3390/molecules26247619
Chicago/Turabian StyleNakano, Daisuke, Kenji Ishitsuka, Madoka Ishihara, Ryota Tsuchihashi, Masafumi Okawa, Kazuo Tamura, and Junei Kinjo. 2021. "Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VII): Active Principles from Thuja occidentalis L." Molecules 26, no. 24: 7619. https://doi.org/10.3390/molecules26247619
APA StyleNakano, D., Ishitsuka, K., Ishihara, M., Tsuchihashi, R., Okawa, M., Tamura, K., & Kinjo, J. (2021). Screening of Promising Chemotherapeutic Candidates from Plants against Human Adult T-Cell Leukemia/Lymphoma (VII): Active Principles from Thuja occidentalis L. Molecules, 26(24), 7619. https://doi.org/10.3390/molecules26247619