Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Secondary Metabolites
2.2. Antioxidant Activity
3. Materials and Methods
3.1. Habitat Characteristics and Plant Material
3.2. Preparation of Leaf Extracts
3.3. Chemicals and Reagents
3.4. Chromatographic Analysis of Arctostaphylos uva-ursi (L.) Phytochemicals
3.5. Determination of Total Phenolic Content (TPC)
3.6. Determination of Total Flavonoid Content (TFC)
3.7. Antioxidant Activity
3.7.1. ABTS•+ Scavenging Activity (ABTS)
3.7.2. DPPH• Scavenging Activity (DPPH)
3.7.3. Reducing Power (RP)
3.7.4. Chelating Ability (CHEL)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Stefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [Green Version]
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants North of the Tropic of Cancer Volumes I–III; Koeltz Scientific Books: Königstein, Germany, 1986. [Google Scholar] [CrossRef]
- Parejo, I.; Viladomat, F.; Bastida, J.; Codina, C. Variation of the arbutin content in different wild populations of Arctostaphylos uva-ursi in Catalonia, Spain. J. Herbs Spices Med. Plants 2002, 9, 329–333. [Google Scholar] [CrossRef]
- Wrona, M.; Blasco, S.; Becerril, R.; Nerin, C.; Sales, E.; Asensio, E. Antioxidant and antimicrobial markers by UPLC ®–ESI-Q-TOF-MSE of a new multilayer active packaging based on Arctostaphylos uva-ursi. Talanta 2019, 196, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Asensio, E.; Vitales, D.; Pérez, I.; Peralba, L.; Viruel, J.; Montaner, C.; Vallès, J.; Garnatje, T.; Sales, E. Phenolic compounds content and genetic diversity at population level across the natural distribution range of Bearberry (Arctostaphylos uva-ursi, Ericaceae) in the Iberian Peninsula. Plants 2020, 9, 1250. [Google Scholar] [CrossRef] [PubMed]
- Matuszkiewicz, J.M. Zespoły Leśne Polski; Wyd. Naukowe PWN: Warszawa, Poland, 2005. [Google Scholar]
- Nalawade, S.M.; Sagare, A.P.; Lee, C.Y.; Kao, C.L.; Tsay, H.S. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Bot. Bull. Acad. Sin. 2003, 44, 79–98. [Google Scholar]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H.O.; Olsen, C.S. Unsustainable collection and unfair trade? Uncovering and assessing assumptions regarding Central Himalayan medicinal plant conservation. Biodivers. Conserv. 2007, 16, 1679–1697. [Google Scholar] [CrossRef]
- Uprety, Y.; Asselin, H.; Dhakal, A.; Julien, N. Traditional use of medicinal plants in the boreal forest of Canada: Review and perspectives. J. Ethnobiol. Ethnomed. 2012, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gawlik-Dziki, U.; Sugier, P.; Dziki, D.; Sugier, D.; Pecio, Ł. Water soldier Stratiotes aloides L.—Forgotten famine plant with unique composition and antioxidant properties. Molecules 2020, 25, 5065. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Winiarczyk, K.; Kowalski, R. Essential oil from Arnica montana L. achenes: Chemical characteristics and anticancer activity. Molecules 2019, 24, 4158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugier, P.; Jakubowicz-Gil, J.; Sugier, D.; Kowalski, R.; Gawlik-Dziki, U.; Kołodziej, B.; Dziki, D. Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 2020, 25, 1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011; p. 130. [Google Scholar] [CrossRef]
- Allen, D.; Bilz, M.; Leaman, D.J.; Miller, R.M.; Timoshyna, A.; Window, J. European Red List of Medicinal Plants; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Proházka, F. Černý a Červený Seznam Cévnatých Rostlin České Republiky (Stav V Roce 2000), ed.; Příroda: Praha, Czech Republic, 2001; Volume 18, pp. 1–166. [Google Scholar]
- Petrova, A.; Vladimirov, V. Red List of Bulgarian vascular plants. Phytol. Balc. 2009, 15, 63–94. [Google Scholar]
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polska Czerwona Lista Paprotników i Roślin Kwiatowych. Polish Red List of Pteridophytes and Flowering Plants; Instytut Ochrony Przyrody Polskiej Akademii Nauk: Kraków, Poland, 2016. [Google Scholar]
- Pardos Carrión, J.A.; Celestino Mur, C. Propagación vegetativa de la gayuba (Arctostaphylos uva-ursi L.). An. INIA Ser. Recur. Nat. 1980, 4, 173–182. [Google Scholar]
- Pihlik, U. Arctostaphylos uva-ursi in Estonia. 2: Biomass resources and their rational exploitation. Eest. NSV Tead. Akad. Toim. Biol. 1989, 38, 40–51. [Google Scholar]
- Recasens, J.; Ninot, P.; Cristóbal, R.; Aymerich, P. Sustainable wild harvesting of Arctostaphylos uva-ursi in the Pyrenees as a conservation practice. J. Herbs Spices Med. Plants 2008, 14, 1–12. [Google Scholar] [CrossRef]
- Polish Pharmaceutical Society. Polish Pharmacopoeia VI; The Minister of Health: Warsaw, Poland, 2002. [Google Scholar]
- European Pharmacopoeia, 8.1 Supplement, 8th ed.; Council of Europe: Strasbourg, France, 2014.
- Olennikov, D.N.; Chekhirova, G.V. 6″-Galloylpicein and other phenolic compounds from Arctostaphylos uva-ursi. Chem. Nat. Compd. 2013, 49, 1–7. [Google Scholar] [CrossRef]
- Panusa, A.; Petrucci, R.; Marrosu, G.; Multari, G.; Gallo, F.R. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts. Phytochemistry 2015, 115, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kurkin, V.A.; Ryazanova, T.; Daeva, E.D.; Kadentsev, V.I. Constituents of Arctostaphylos uva-ursi leaves. Chem. Nat. Compd. 2018, 54, 278–280. [Google Scholar] [CrossRef]
- Barl, B.; Loewen, D.; Svendsen, E. Arctostaphylos uva ursi L. Spreng. In Saskatchewan Herb Database; University of Saskatchewan: Saskatoon, SK, Canada, 1996; pp. 18–23. [Google Scholar]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Holopainen, M.; Jahodar, L.; Seppänen-Laakso, T.; Laakso, I.; Kauppinen, V. Antimicrobial activity of some Finnish Ericaceous plants. Acta Pharm. Fenn. 1988, 97, 197–202. [Google Scholar]
- Annuk, H.; Hirmo, S.; Türi, E.; Mikelsaar, M.; Arak, E.; Wadström, T. Effect on cell surface hydrophobicity and susceptibility of Helicobacter pylori to medicinal plant extracts. FEMS Microbiol. Lett. 1999, 172, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, R.; O’Grady, M.N.; O’Callaghan, Y.; O’Brien, N.M.; Kerry, J.P. Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci. 2007, 76, 604–610. [Google Scholar] [CrossRef]
- Azman, N.A.M.; Gallego, M.G.; Segovia, F.; Abdullah, S.; Shaarani, S.M.; Almajano-Pablos, M.P. Study of the properties of bearberry leaf extract as a natural antioxidant in model foods. Antioxidants 2016, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Vučić, D.M.; Petković, M.R.; Rodić-Grabovac, D.B.; Vasić, S.M.; Čomić, L.R. In vitro efficacy of extracts of Arctostaphylos uva-ursi L. on clinical isolated Escherichia coli and Enterococcus faecalis strains. Kragujev. J. Sci. 2013, 35, 107–113. [Google Scholar]
- Beaux, D.; Fleurentin, J.; Mortier, F. Effect of extracts of Orthosiphon stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) Spreng. in rats. Phyther. Res. 1999, 13, 222–225. [Google Scholar] [CrossRef]
- Vranješ, M.; Popović, B.M.; Štajner, D.; Ivetić, V.; Mandić, A.; Vranješ, D. Effects of bearberry, parsley and corn silk extracts on diuresis, electrolytes composition, antioxidant capacity and histopathological features in mice kidneys. J. Funct. Foods 2016, 21, 272–282. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Inhibition of proliferation of human carcinoma cell lines by phenolic compounds from a bearberry-leaf crude extract and its fractions. J. Funct. Foods 2013, 5, 660–667. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Higashino, M.; Nakai, Y.; Iinuma, M.; Kubo, M.; Lang, F.A. Studies of cuticle drugs from natural sources. IV. Inhibitory effects of some Arctostaphylos plants on melanin biosynthesis. Biol. Pharm. Bull. 1996, 19, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Oh, G.S.; Pae, H.O.; Oh, H.; Hong, S.G.; Kim, I.K.; Chai, K.Y.; Yun, Y.G.; Kwon, T.O.; Chung, H.T. In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 2001, 174, 17–24. [Google Scholar] [CrossRef]
- Huh, J.E.; Lee, E.O.; Kim, M.S.; Kang, K.S.; Kim, C.H.; Cha, B.C.; Surh, Y.J.; Kim, S.H. Penta-O-galloyl-beta-d-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: Roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 2005, 26, 1436–1445. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, S.Y.; Ye, Y.B.; Zhao, W.H.; Sun, X.G.; Wang, Z.Q.; Li, R.; Sun, Y.H.; Tian, W.X.; Zhang, Y.X. The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol. Appl. Biochem. 2008, 51, 73–78. [Google Scholar] [CrossRef]
- Cavalher-Machado, S.C.; Rosas, E.C.; Brito, F.A.; Heringe, A.P.; Oliveira, R.R.; Kaplan, M.A.C.; Figueiredo, M.R.; Henriques, M.G.M.O. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int. Immunopharmacol. 2008, 8, 1552–1560. [Google Scholar] [CrossRef]
- Ahn, M.J.; Kim, C.Y.; Lee, J.S.; Kim, T.G.; Kim, S.H.; Lee, C.K.; Lee, B.B.; Shin, C.G.; Huh, H.; Kim, J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002, 68, 457–459. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, M.J.; Kim, D.W.; Kim, G.Y.; Kim, J.K.; Gebru, Y.A.; Choi, H.S.; Kim, Y.H.; Kim, M.K. Changes of phytochemical components (urushiols, polyphenols, gallotannins) and antioxidant capacity during Fomitella fraxinea—Mediated fermentation of Toxicodendron vernicifluum bark. Molecules 2019, 24, 683. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-A.; Lee, J.-E.; Kim, J.H.; Lee, H.-J.; Kang, N.J. Penta-1,2,3,4,6-O-galloyl-β-d-glucose inhibits UVB-induced photoaging by targeting PAK1 and JNK1. Antioxidants 2019, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.; Filipek, A.; Czerwińska, A.; Naruszewicz, M. Oenothera paradoxa defatted seeds extract and its bioactive component penta-O-galloyl-β-d-glucose decreased production of reactive oxygen species and inhibited release of Leukotriene B4, Interleukin-8, Elastase, and myeloperoxidase in Human Neutrophils. J. Agric. Food Chem. 2010, 58, 9960–9966. [Google Scholar] [CrossRef]
- Pan, M.H.; Lin, J.H.; Lin-Shiau, S.Y.; Lin, J.K. Induction of apoptosis by penta-O-galloyl-beta-d-glucose through activation of caspase-3 in human leukemia hl-60 cells. Eur. J. Pharmacol. 1999, 381, 171–183. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Kim, S.H.; Hagerman, A.E.; Lü, J. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res. 2009, 26, 2066–2080. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Seo, N.J.; Jeong, S.J.; Park, Y.; Jung, D.B.; Koh, W.; Lee, H.J.; Lee, E.O.; Ahn, K.S.; Ahn, K.S.; et al. Oral administration of penta-O-galloyl-beta-d-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 2011, 32, 804–811. [Google Scholar] [CrossRef]
- Ryu, H.G.; Jeong, S.J.; Kwon, H.Y.; Lee, H.J.; Lee, E.O.; Lee, M.H.; Choi, S.H.; Ahn, K.S.; Kim, S.H. Penta-O-galloyl-beta-d-glucose attenuates cisplatin-induced nephrotoxicity via reactive oxygen species reduction in renal epithelial cells and enhances antitumor activity in caki-2 renal cancer cells. Toxicol. Vitr. 2012, 26, 206–214. [Google Scholar] [CrossRef]
- Mendonca, P.; Alghamdi, S.; Messeha, S.; Soliman, K.F.A. Pentagalloyl glucose inhibits TNF-α-activated CXCL1/GRO-α expression and induces apoptosis-related genes in triple-negative breast cancer cells. Sci. Rep. 2021, 11, 5649. [Google Scholar] [CrossRef]
- Hao, X.L.; Kang, Y.; Li, J.K.; Li, Q.S.; Liu, E.L.; Liu, X.X. Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells. Mol. Med. Rep. 2016, 14, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xie, Z.; Zhang, Q.; Ma, Y.; Bi, X.; Yang, X.; Li, B.; Chen, J. Hyperoside ameliorates diabetic retinopathy via anti-oxidation, inhibiting cell damage and apoptosis induced by high glucose. Front. Pharmacol. 2020, 11, 797. [Google Scholar] [CrossRef]
- Sun, J.; Hoshino, H.; Takaku, K.; Nakajima, O.; Muto, A.; Suzuki, H.; Tashiro, S.; Takahashi, S.; Shibahara, S.; Alam, J.; et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002, 21, 5216–5224. [Google Scholar] [CrossRef]
- Zdunic, G.; Godjevac, D.; Savikin, K.; Petrovic, S. Comparative analysis of phenolic compounds in seven Hypericum species and their antioxidant properties. Nat. Prod. Commun. 2017, 12, 1805–1811. [Google Scholar] [CrossRef]
- Kesari, K.K.; Dhasmana, A.; Shandilya, S.; Prabhakar, N.; Shaukat, A.; Dou, J.; Rosenholm, J.M.; Vuorinen, T.; Ruokolainen, J. Plant-derived natural biomolecule picein attenuates menadione induced oxidative stress on neuroblastoma cell mitochondria. Antioxidants 2020, 9, 552. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Nagao, T.; Tanaka, T.; Yang, C.R.; Okabe, H.; Kouno, I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol. Pharm. Bull. 2004, 27, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.Z.; Chen, L.H.; Liu, S.S.; Deng, Y.; Zheng, G.H.; Gu, Y.; Ming, Y.L. Bioguided fraction and isolation of the antitumor components from Phyllanthus niruri L. Biomed. Res. Int. 2016, 2016, 9729275. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Li, X.; Li, X.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol. Rep. 2018, 39, 2545–2552. [Google Scholar] [CrossRef]
- Pham, A.T.; Malterud, K.E.; Paulsen, B.S.; Diallo, D.; Wangensteen, H. DPPH radical scavenging and xanthine oxidase inhibitory activity of Terminalia macroptera leaves. Nat. Prod. Commun. 2011, 6, 1125–1128. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.R.; Luo, M.; Fan, L.; Zhang, T.; Liu, L.; Dong, J.H.; Wu, G. Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int. J. Mol. Med. 2010, 25, 531–536. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Xue, J.; Ma, Q.; Zhang, J.; Chen, Y.F.; Shang, Z.Z.; Li, Q.Q.; Zhang, S.L.; Zhao, L. Effect of Corilagin on the miR-21/smad7/ ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol. Int. 2016, 65, 308–315. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Ganguly, R.; Rana, H.K.; Pandey, P.K.; Sethi, G.; Bishayee, A.; Pandey, A.K. Corilagin in cancer: A critical evaluation of anticancer activities and molecular mechanisms. Molecules 2019, 24, 3399. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother. 2018, 99, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Mou, W.; Lin, F.; Xu, J.; Lei, Q.; Fang, W. Radical scavenging activity of myricetin. Acta Phys. Chim. Sin. 2013, 29, 1421–1432. [Google Scholar] [CrossRef]
- Saleem, A.; Harris, C.S.; Asim, M.; Cuerrier, A.; Martineau, L.; Haddad, P.S.; Arnasona, J.T. RP-HPLC-DAD-APCI/MSD method for the characterisation of medicinal Ericaceae used by the Eeyou Istchee Cree First Nations. Phytochem. Anal 2010, 21, 328–339. [Google Scholar] [CrossRef]
- Kusumawati, I.; Gunawan, I. Studies in Natural Products Chemistry. In Natural Antioxidants in Cosmetics; Airlangga University: Surabaya, Indonesia, 2013; Volume 40, Chapter 15; pp. 485–505. [Google Scholar]
- Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kurami, R.; Dhaka, N. Potential applications of antioxidants—A Review. J. Pharm. Res. 2013, 7, 828–835. [Google Scholar] [CrossRef]
- Rambabu, K.; Edathil, A.A.; Nirmala, G.S.; Hasan, S.W.; Yousef, A.F.; Show, P.L.; Banat, F. Date-fruit syrup waste extract as a natural additive for soap production with enhanced antioxidant and antibacterial activity. Environ. Technol. Innov. 2020, 20, 101153. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L.; Cocoletzi, H.H. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int. J. Biol. Macromol. 2019, 126, 1234–1243. [Google Scholar] [CrossRef]
- Yushkova, Y.V.; Chernyak, E.I.; Gatilov, Y.V.; Vasil’ev, V.G.; Morozov, S.V.; Grigor’ev, I.A. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates. Saudi Pharm. J. 2017, 26, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Theodosis-Nobelos, P.; Papagiouvannis, P.G.; Rekka, E.A. A Review on vitamin E natural analogues and on the design of synthetic vitamin E derivatives as cytoprotective agents. Mini-Rev. Med. Chem. 2021, 21, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, J.P.; Johnson, J.J. Oregano (Origanum vulgare) extract for food preservation and improvement in gastrointestinal health. Int. J. Nutr. 2019, 3, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sęczyk, Ł.; Król, B.; Kołodziej, B. In vitro bioaccessibility and activity of Greek oregano (Origanum vulgare L. ssp. hirtum (link) Ietswaart) compounds as affected by nitrogen fertilization. J. Sci. Food Agric. 2020, 100, 2410–2417. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lamaison, J.L.; Carnart, A. Teneurs en principaux flavonoïdes des fleurs et feuilles de Crataegeus monogyna Jacq. et de Crataegeus laevigata (Poiret) DC. Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Lee, H.-I.; Chiang, S.-H.; Lin, F.-I.; Chang, Y. Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J. Food Drug Anal. 2001, 9, 96–101. [Google Scholar] [CrossRef]
- Kovach, W. MVSP—A Multivariate Statistical Package for Windows; Version 3.1; Kovach Computing Services: Wales, UK, 1999. [Google Scholar]
Variables | Axis 1 | Axis 2 | Axis 3 |
---|---|---|---|
Eigenvalues | 2.34 | 1.62 | 1.24 |
Percentage | 29.28 | 20.19 | 15.51 |
Cumulative percentage | 29.28 | 49.48 | 64.99 |
ARB | 0.100 | −0.471 | −0.168 |
mARB | 0.362 | 0.056 | 0.542 |
PGG | 0.101 | −0.439 | 0.403 |
HYP | −0.585 | −0.113 | 0.312 |
PIC | −0.089 | 0.518 | 0.321 |
COR | 0.378 | 0.048 | 0.454 |
TPC | 0.060 | −0.536 | 0.094 |
TFC | −0.593 | −0.110 | 0.315 |
No | ABTS (mg TE g−1) | DPPH (mg TE g−1) | RP (mg TE g−1) | CHEL (mg EDTA g−1) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
1 | 551.06 a | 5.24 | 420.66 ab | 8.88 | 359.85 ab | 2.51 | 3.28 a | 0.32 |
2 | 530.63 a | 12.94 | 374.76 a | 19.28 | 343.38 a | 3.51 | 4.02 bc | 0.06 |
3 | 654.66 c | 20.75 | 515.25 cd | 19.24 | 401.30 de | 4.33 | 4.08 bc | 0.23 |
4 | 654.34 c | 15.79 | 542.71 d | 23.59 | 393.70 cde | 1.57 | 3.41 a | 0.07 |
5 | 597.46 b | 12.09 | 469.43 b | 9.27 | 389.15 cd | 3.23 | 4.03 bc | 0.16 |
6 | 676.16 cd | 16.28 | 551.63 d | 7.72 | 365.24 b | 6.94 | 3.90 bc | 0.14 |
7 | 707.67 b | 7.11 | 682.17 e | 24.33 | 406.64 de | 8.04 | 3.59 | 0.17 |
8 | 561.95 ab | 12.95 | 541.87 d | 11.14 | 344.75 a | 5.67 | 4.34 ab | 0.11 |
9 | 713.49 d | 21.43 | 756.62 f | 24.45 | 408.05 e | 4.13 | 4.84 cd | 0.17 |
10 | 593.34 b | 23.31 | 456.75 b | 9.22 | 384.94 bc | 4.35 | 4.21 de | 0.09 |
11 | 652.70 c | 3.95 | 508.44 cd | 13.29 | 398.57 de | 7.84 | 4.69 c | 0.18 |
12 | 561.95 ab | 7.12 | 392.84 a | 8.85 | 361.46 ab | 8.92 | 4.42 d | 0.28 |
13 | 547.18 a | 3.94 | 377.33 a | 11.12 | 351.89 a | 3.05 | 4.60 d | 0.09 |
14 | 561.95 ab | 7.90 | 412.02 ab | 13.52 | 377.75 bc | 9.83 | 5.34 d | 0.10 |
15 | 596.31 b | 8.66 | 447.16 b | 21.97 | 383.76 bc | 5.58 | 4.61 cd | 0.14 |
16 | 556.75 a | 10.32 | 415.57 ab | 27.18 | 365.13 b | 6.00 | 4.82 de | 0.08 |
17 | 643.71 c | 9.91 | 518.34 d | 13.32 | 402.67 de | 5.77 | 4.89 de | 0.04 |
18 | 543.71 a | 9.05 | 372.18 a | 13.52 | 376.51 bc | 7.64 | 4.78 d | 0.16 |
19 | 560.28 ab | 8.58 | 401.97 a | 12.74 | 375.60 bc | 8.82 | 4.19 c | 0.23 |
20 | 548.77 a | 6.86 | 423.62 ab | 10.25 | 401.23 de | 2.51 | 3.56 ab | 0.16 |
Variables | Axis 1 | Axis 2 | Axis 3 |
---|---|---|---|
Eigenvalues | 3.38 | 2.48 | 1.60 |
Percentage | 28.17 | 20.65 | 13.32 |
Cumulative percentage | 28.17 | 48.83 | 62.15 |
ARB | 0.186 | 0.143 | −0.596 |
mARB | 0.045 | 0.351 | 0.347 |
PGG | −0.052 | 0.237 | −0.22 |
HYP | −0.346 | −0.35 | −0.195 |
PIC | 0.036 | −0.204 | 0.424 |
COR | 0.156 | 0.304 | 0.264 |
TPC | −0.277 | 0.402 | −0.267 |
TFC | −0.353 | −0.359 | −0.181 |
ABTS | −0.493 | 0.134 | 0.067 |
DPPH | −0.488 | 0.034 | 0.244 |
RP | −0.34 | 0.441 | 0.018 |
CHEL | 0.132 | 0.198 | −0.146 |
ABTS | DPPH | RP | CHEL | |
---|---|---|---|---|
ARB | −0.236 | −0.586 ** | 0.041 | −0.090 |
mARB | 0.537 ** | 0.587 *** | 0.240 | 0.205 |
PGG | 0.005 | 0.093 | 0.132 | 0.597 ** |
HYP | 0.151 | 0.076 | 0.003 | 0.410 * |
PIC | −0.144 | −0.001 | −0.202 | −0.004 |
COR | 0.108 | 0.457 | 0.247 | 0.515 ** |
TPC | 0.517 ** | 0.239 | 0.859 *** | −0.076 |
TFC | 0.054 | 0.073 | 0.035 | 0.395 * |
ABTS | DPPH | RP | CHEL | |
---|---|---|---|---|
ARB | −0.291 | −0.456 * | −0.202 | 0.220 |
mARB | 0.094 | 0.103 | 0.229 | −0.390 * |
PGG | 0.370 * | 0.349 | 0.221 | 0.014 |
HYP | 0.137 | −0.015 | 0.104 | 0.561 ** |
PIC | −0.096 | −0.128 | 0.236 | −0.424 * |
COR | −0.398 * | −0.289 | 0.331 | −0.587 ** |
TPC | 0.641 *** | 0.690 *** | 0.857 *** | 0.014 |
TFC | 0.019 | −0.019 | 0.065 | 0.634 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugier, P.; Sęczyk, Ł.; Sugier, D.; Krawczyk, R.; Wójcik, M.; Czarnecka, J.; Okoń, S.; Plak, A. Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe. Molecules 2021, 26, 7692. https://doi.org/10.3390/molecules26247692
Sugier P, Sęczyk Ł, Sugier D, Krawczyk R, Wójcik M, Czarnecka J, Okoń S, Plak A. Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe. Molecules. 2021; 26(24):7692. https://doi.org/10.3390/molecules26247692
Chicago/Turabian StyleSugier, Piotr, Łukasz Sęczyk, Danuta Sugier, Rafał Krawczyk, Małgorzata Wójcik, Joanna Czarnecka, Sylwia Okoń, and Andrzej Plak. 2021. "Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe" Molecules 26, no. 24: 7692. https://doi.org/10.3390/molecules26247692
APA StyleSugier, P., Sęczyk, Ł., Sugier, D., Krawczyk, R., Wójcik, M., Czarnecka, J., Okoń, S., & Plak, A. (2021). Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe. Molecules, 26(24), 7692. https://doi.org/10.3390/molecules26247692