Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Caftaric Acid Concentration over Green Grape Berries Maturation
2.2. Hydroxycinnamic Acid Esters in Verjuice
2.3. Fast Protein Liquid Chromatography Applied to Hydroxycinnamic Acid Esters Separation
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Grape Degree of Maturation Parameters
3.3. HCAs Determination in High Performance Liquid Chromatography (HPLC)
3.4. HCAs Retrieve by Fast Protein Liquid Chromatography (FPLC)
3.5. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R.; McPhee, D.J. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jiang, L. Application of Chicoric Acid Extract in Echinacea Purpurea. CN102726550, 17 October 2012. [Google Scholar]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; de Pavia Foletto-Felipe, M.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.; Petereit, F.; Hensel, A. Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules 2009, 14, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Scagel, C.F. Chicoric acid: Chemistry, distribution, and production. Front. Chem. 2013, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.; Oliveira, C.; Santos, C.; Campos, F.M.; Couto, J.A. Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors. Eur. Food Res. Technol. 2018, 244, 1985–1994. [Google Scholar] [CrossRef]
- Lin, S.D.; Sung, J.M.; Chen, C.L. Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chem. 2011, 125, 226–231. [Google Scholar] [CrossRef]
- Bahri, M.; Hance, P.; Grec, S.; Quillet, M.C.; Trotin, F.; Hilbert, J.L.; Hendriks, T. A “novel” protocol for the analysis of hydroxycinnamic acids in leaf tissue of chicory (Cichorium intybus L., Asteraceae). Sci. World J. 2012, 2012, 142983. [Google Scholar] [CrossRef] [Green Version]
- Papetti, A.; Daglia, M.; Aceti, C.; Sordelli, B.; Spini, V.; Carazzone, C.; Gazzani, G. Hydroxycinnamic acid derivatives occurring in Cichorium endivia vegetables. J. Pharm. Biomed. Anal. 2008, 48, 472–476. [Google Scholar] [CrossRef]
- Stojakowska, A.; Malarz, J.; Szewczyk, A.; Kisiel, W. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant. 2012, 34, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, M.; Yan, X.; Ono, H.; Yoshida, M.; Nagata, T.; Nakanishi, T. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius). J. Agric. Food Chem. 2003, 51, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Oliveira, C.; Borges, F. Caffeic acid derivatives, analogs and applications: A patent review (2009–2013). Expert Opin. Ther. Pat. 2014, 24, 1257–1270. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Cortés, A.; Moreira, M.T.; Feijoo, G. Integrated evaluation of wine lees valorization to produce value-added products. Waste Manag. 2019, 95, 70–77. [Google Scholar] [CrossRef]
- De Bona, G.S.; Adrian, M.; Negrel, J.; Chiltz, A.; Klinguer, A.; Poinssot, B.; Héloir, M.C.; Angelini, E.; Vincenzi, S.; Bertazzon, N. Dual mode of action of grape cane extracts against Botrytis cinerea. J. Agric. Food Chem. 2019, 67, 5512–5520. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.N.; He, L.; He, F.; Chen, W.; Duan, C.Q.; Wang, J. Changes in global aroma profiles of cabernet sauvignon in response to cluster thinning. Food Res. Int. 2019, 122, 56–65. [Google Scholar] [CrossRef]
- Fanzone, M.; Zamora, F.; Jofré, V.; Assof, M.; Peña-Neira, Á. Phenolic composition of Malbec grape skins and seeds from Valle de Uco (Mendoza, Argentina) during ripening. effect of cluster thinning. J. Agric. Food Chem. 2011, 59, 6120–6136. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Esteruelas, M.; González, E.; Kontoudakis, N.; Jiménez, J.; Fort, F.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: Berry thinning versus cluster thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef]
- The Commission of the European Communities. Regulation (EU) No 1306/2013 2013, L 347, 671–854. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=celex:32013R1306 (accessed on 3 February 2021).
- Salah Eddine, N.; Tlais, S.; Alkhatib, A.; Hamdan, R. Effect of four grape varieties on the physicochemical and sensory properties of unripe grape verjuice. Int. J. Food Sci. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Dupas de Matos, A.; Magli, M.; Marangon, M.; Curioni, A.; Pasini, G.; Vincenzi, S. Use of verjuice as an acidic salad seasoning ingredient: Evaluation by consumers’ liking and Check-All-That-Apply. Eur. Food Res. Technol. 2018, 244, 2117–2125. [Google Scholar] [CrossRef]
- Nasser, M.; Cheikh-Ali, H.; Hijazi, A.; Merah, O.; Al-Rekaby, A.E.A.N.; Awada, R. Phytochemical profile, antioxidant and antitumor activities of green grape juice. Processes 2020, 8, 507. [Google Scholar] [CrossRef]
- Fia, G.; Bucalossi, G.; Gori, C.; Borghini, F.; Zanoni, B. Recovery of bioactive compounds from unripe red grapes (cv. Sangiovese) through a green extraction. Foods 2020, 9, 566. [Google Scholar] [CrossRef] [PubMed]
- Honisch, C.; Osto, A.; Dupas de Matos, A.; Vincenzi, S.; Ruzza, P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem. 2020, 305, 125506. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Ferreira-Lima, N.E.; Panceri, C.P.; Bordignon-Luiz, M.T. Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchem. J. 2014, 114, 155–163. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Wu, C.H.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol. Lett. 2007, 29, 1179–1182. [Google Scholar] [CrossRef]
- Wu, C.H.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension cultures of Echinacea purpurea by the manipulation of incubation temperature and photoperiod. Biochem. Eng. J. 2007, 36, 301–303. [Google Scholar] [CrossRef]
- Peng, Y. The Method for Preparing Chicoric Acid from Echinacea purpurea. CN1587251A, 2 March 2005. [Google Scholar]
- Chen, B.; Guo, J.; Xie, J. Method for Purifying Chicoric Acid and Monocaffeyltartaric Acid from Echinacea purpurea Extract. CN20081143072, 9 October 2008. [Google Scholar]
- Koriem, K.M.M. Caftaric acid: An overview on its structure, daily consumption, bioavailability and pharmacological effects. Biointerface Res. Appl. Chem. 2020, 10, 5616–5623. [Google Scholar]
- Sun, R.Z.; Cheng, G.; Li, Q.; He, Y.N.; Wang, Y.; Lan, Y.B.; Li, S.Y.; Zhu, Y.R.; Song, W.F.; Zhang, X.; et al. Light-induced variation in phenolic compounds in cabernet sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant. Sci. 2017, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C.F.R. Echinacea purpurea (L.) Moench: Chemical characterization and bioactivity of its extracts and fractions. Pharmaceuticals 2020, 13, 125. [Google Scholar] [CrossRef]
- Buiarelli, F.; Coccioli, F.; Merolle, M.; Jasionowska, R.; Terracciano, A. Identification of hydroxycinnamic acid-tartaric acid esters in wine by HPLC-tandem mass spectrometry. Food Chem. 2010, 123, 827–833. [Google Scholar] [CrossRef]
- Pour Nikfardjam, M.S. General and polyphenolic composition of unripe grape juice (verjus/verjuice) from various producers. Mitteilungen Klosterneubg. 2008, 58, 28–31. [Google Scholar]
- Mulero, J.; Pardo, F.; Zafrilla, P. Antioxidant activity and phenolic composition of organic and conventional grapes and wines. J. Food Compos. Anal. 2010, 23, 569–574. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M.; Waterhouse, A.L. A Direct HPLC separation of wine phenolics. Am. J. Enol. Vitic. 1994, 45, 1–5. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Sanzenbacher, S.; Kammerer, D.R.; Berardini, N.; Conrad, J.; Beifuss, U.; Carle, R.; Schieber, A. Isolation of hydroxycinnamoyltartaric acids from grape pomace by high-speed counter-current chromatography. J. Chromatogr. A 2006, 1128, 61–67. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
Variety | BBCH Code | Yield (%) | TA (g/L) 1 | SC (g/L) | CFA (mg/L) | CFA Purity (%) 2 | CUA (mg/L) | CUA Purity (%) 2 |
---|---|---|---|---|---|---|---|---|
CH | 75 | 57.4 (0.3) | 28.2 (0.4) | 7.3 (0.6) | 412.1 (12.2) | 44.9 (3.1) | 50.1 (2.8) | 11.6 (1.3) |
CH | 77 | 57.3 (2.5) | 35.1 (1.0) | 8.0 (1.0) | 230.4 (39.4) | 46.8 (2.9) | 58.8 (5.6) | 11.5 (1.5) |
CH | 79 | 63.1 (1.6) | 42.6 (3.6) | 9. 7 (0.6) | 173.1 (16.7) | 48.7 (0.6) | 14.3 (4.0) | 11.1 (1.1) |
CH | 81 | 66.1 (1.0) | 33.3 (3.6) | 53. 7 (16.0) | 257.5 (25.7) | 47.3 (3.4) | 70.5 (4.0) | 11.42 (1.3) |
GL | 73 | 50.8 (1.1) | 32.6 (1.3) | 9.0 (0.1) | 295.8 (7.6) | 61.2 (3.0) | 23.5 (9.3) | 8.0 (0.2) |
GL | 75 | 46.0 (0.7) | 41.8 (0.7) | 11.7 (0.6) | 272.5 (19.6) | 67.6 (2.8) | 50.2 (10.5) | 6.36 (1.4) |
GL | 77 | 52.5 (0.9) | 40.5 (0.7) | 11.7 (0.6) | 165.1 (1.4) | 62.4 (7.0) | 36.6 (7.7) | 7.6 (0.5) |
GL | 79 | 55.1 (0.3) | 39.5 (0.9) | 27.0 (2.7) | 179.8 (5.8) | 63.3 (1.0) | 23.0 (2.0) | 7.3 (0.2) |
ME | 75 | 54.7 (2.8) | 29.6(0.6) | 8.3 (0.6) | 207.0 (40.4) | 52.4 (0.9) | 54.2 (8.8) | 7.2 (0.2) |
ME | 77 | 59.7 (0.9) | 38.4 (0.1) | 10.0 (0.1) | 296.1 (34.1) | 50.9 (4.1) | 18.5 (7.6) | 8.2 (0.2) |
ME | 79 | 62.3 (1.3) | 42.5 (0.7) | 11.0 (1.0) | 222.8 (20.3) | 58.3 (6.6) | 28.1 (7.3) | 6.2 (0. 8) |
ME | 81 | 64.9 (1.6) | 34.8 (2.6) | 36.3 (5.9) | 154.0 (13.1) | 48.7 (6.9) | 36.5 (9.1) | 7.5 (0.9) |
PN | 77 | 52.1 (2.3) | 27.80 (0.6) | 7.0 (0.1) | 161.6 (15.9) | 59.8 (3.4) | 13.3 (2.0) | 8.9 (0.6) |
PN | 79 | 56.7 (1.4) | 38.9 (0.1) | 7.7 (0.6) | 211.1 (6.3) | 58.4 (9.7) | 47.2 (5.5) | 11.7 (2.1) |
PN | 81 | 58.3(2.8) | 45.7 (0.2) | 21.0 (0.1) | 267.4 (33.5) | 63.0 (1.4) | 21.9 (2.2) | 8.2 (0.5) |
PN | 83 | 60.7 (1.6) | 35.8(1.0) | 43.7 (3.1) | 192.9 (10.8) | 57.8 (4.8) | 22.6 (6.1) | 8.1 (0.6) |
SG | 73 | 55.2 (2.2) | 32.4 (1.1) | 7.0 (0.1) | 119.6 (17.6) | 59.7 (4.9) | 30.5 (7.4) | 16.3 (1.5) |
SG | 75 | 57.1 (3.0) | 36.5 (0.5) | 8.0 (0.1) | 118.9 (11.0) | 56.3 (6.5) | 15.5 (5.2) | 13.6 (0.4) |
SG | 77 | 56.3 (2.4) | 38.3 (0.1) | 11.3 (0.6) | 182.6 (30.8) | 59.8 (1.7) | 33.3 (3.1) | 12.7 (0.1) |
SG | 79 | 60.7 (3.2) | 33.7 (1.5) | 36.3 (4.0) | 212.4 (0.5) | 50.8 (6.6) | 21.3 (2.8) | 12.6 (1.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendramin, V.; Viel, A.; Vincenzi, S. Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery. Molecules 2021, 26, 1148. https://doi.org/10.3390/molecules26041148
Vendramin V, Viel A, Vincenzi S. Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery. Molecules. 2021; 26(4):1148. https://doi.org/10.3390/molecules26041148
Chicago/Turabian StyleVendramin, Veronica, Alessia Viel, and Simone Vincenzi. 2021. "Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery" Molecules 26, no. 4: 1148. https://doi.org/10.3390/molecules26041148
APA StyleVendramin, V., Viel, A., & Vincenzi, S. (2021). Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery. Molecules, 26(4), 1148. https://doi.org/10.3390/molecules26041148