Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Assessment of the Actual State of the Lebanese Market
2.2.1. Dry preserved Samples
2.2.2. Brine Preserved Samples
2.2.3. Stuffed Preserved Samples
2.2.4. Comparison of the Processing Modes
3. Materials and Methods
3.1. Samples of Vine Leaves
3.1.1. Market Samples
3.1.2. Blank Matrix Sample
3.2. Chemicals, Materials and Standards
3.3. Standard Solution Preparation
3.4. Sample Preparation
3.5. LC-MS/MS Analysis
3.6. Identification and Quantification of the Pesticide Residue
3.7. Method Validation Criteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rizzuti, A.; Caliandro, R.; Gallo, V.; Mastrorilli, P.; Chita, G.; Latronico, M. A combined approach for characterisation of fresh and brined vine leaves by X-ray powder diffraction, NMR spectroscopy and direct infusion high resolution mass spectrometry. Food Chem. 2013, 141, 1908–1915. [Google Scholar] [CrossRef]
- Creasy, G.L.; Creasy, L.L. Grapes Crop Production Science in Horticulture Series, 2nd ed.; CABI: Cambridge, MA, USA, 2018; ISBN 978-1-78639-136-0. [Google Scholar]
- Antoun, L.B. Wine industry in the Bekaa valley-Lebanon food-processing industry as a basis for community dynamics and local socio-economic development. Eur. Sci. J. 2014, 2, 373–385. [Google Scholar]
- Hayar, S.; Al Hadi, J.; Merhi, A.; Majed, L.; Saba Ayon, L. L’effet de 3 modes de conservation sur la dissipation des résidus de pesticides dans les feuilles de vigne Vitis vinifera. In Proceedings of the 47ème Congrès du Groupe Français des Pesticides, Nancy, France, 15–18 May 2017. [Google Scholar]
- Sandikly, N.; Hayar, S.; Millet, M. Monitoring Survey of Pesticide Residues in Table Grapes and Risk Assessment to Human in Lebanon. In Proceedings of the 49ème Congrès du Groupe Français des Pesticides, Montpellier, France, 21–24 May 2019. [Google Scholar]
- Boucheny, A.; Brum-Bousquet, M. Contribution à l’étude de la feuille de vigne rouge (Vitis vinifera L.). Plante Médicinales et Physiothérapie 1990, 24, 179–192. [Google Scholar]
- Saat, I.G.; Sengul, M.; Keles, F. Use of Grape leaves in canned Food. Pak. J. Nutr. 2002, 1, 257–262. [Google Scholar]
- Nehir, S.; Kavas, A.; Karakaya, S. Nutrient Composition of Stuffed Vine Leaves: A Mediterranean Dietary. J. Food Qual. 1997, 20, 337–341. [Google Scholar]
- Gülcü, M.; Demirci, A.Ş. A Research on Quality Properties of Some Pickled Grape Leaves. J. Tekirdag Agric. Fac. 2011, 8, 16–21. [Google Scholar]
- Gülcü, M.; Demirci, A.Ş. Pesticide Residue Problem in Brined Leaves Production and Marketing. In Proceedings of the 4th Traditional Foods Symposium, Adana, Turkey, 17–19 April 2014; p. 331. [Google Scholar]
- Kosar, M.; Kupeli, E.; Malyer, H.; Uylaser, V.; Turkben, C.; Baser, K.H. Effect of brining on biological activity of leaves of Vitis vinifera L. (Cv Sultani Cekirdeksiz) from Turkey. J. Agric. Food Chem. 2007, 55, 4596–4603. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Cheng, V.J.; McConnell, M.; Zhao, J.H.; Sedcole, R.; Harrison, R. Antioxydant activities, sensory and anti-influenza activity of grape skin tea infusion. Food Chem. 2011, 129, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan, N.; Keskin, D.; Zorlu, Z.; Ugur, A. In-vitro antimicrobial activities of different extracts of grapevine leave (Vitis vinifera L.) from West Antolia against some pathogenic microorganisms. J. Pure Appl. Micbiol. 2012, 6, 1303–1308. [Google Scholar]
- Orhan, D.D.; Ergun, F. Hepatoprotective effect of Vitis vinifera L. leaves on carbon tetrachloride-induced acute liver damage in rats. J. Ethnopharmacol. 2007, 12, 145–151. [Google Scholar] [CrossRef]
- Nees, S.; Weiss, D.R.; Reichenbach-klinke, E.; Ramp, F.; Heilmeier, B.; Kanbach, J.; Esperester, A. Protective effects of flavonoids contained in the red vine leaf on venular endothelium against the attack of activated blood components in vitro. Arzneimittelforschung 2003, 53, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Deliorman-Orhan, D.; Orhan, N.; Ozcelik, B.; Ergun, F. Biological activities of Vitis vinifera L. leaves. Turk. J. Biol. 2009, 33, 341–348. [Google Scholar]
- Mansour, R.; Haouas, N.; Kahla-Nakbi, A.B.; Hammani, S.; Mighri, Z.; Mhenni, F.; Babba, H. The effect of Vitis vinifera L. leaves extract on Leishmania infantum. Iran. J. Pharm. Sci. 2013, 12, 349–355. [Google Scholar]
- Flamini, R. Mass Spectrometry in Grape and Wine Chemistry. Part I: Polyphenols. Mass Spectrom. Rev. 2003, 22, 218–250. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Oliboni, L.S.; Agostini, F.; Funchal, C.; Serafini, L.; Henriques, J.A.; Salvador, M. Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol. In Vitro 2010, 21, 148–153. [Google Scholar]
- Fernandes, F.; Ramalhosa, E.; Pires, P.; Verdial, J.; Valentao, P.; Andrade, P.; Bento, A.; Pereira, J.A. Vitis vinifera leaves towards bioactivity. Ind. Crops Prod. 2013, 43, 434–440. [Google Scholar] [CrossRef]
- Bombardelli, E.; Morazzoni, P. Vitis vinifera L. Fitoterapia 1995, 66, 291–317. [Google Scholar]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Felicio, J.D.; Santos, R.S.; Gonzalez, E. Chemical constituents from Vitis vinifera (Vitaceace). Int. J. Agric. Biol. 2001, 68, 47–50. [Google Scholar]
- Wilcox, W.F.; Gubler, W.D.; Uyemoto, J.K. Compendium of Grape Diseases, Disorders, and Pests, 2nd ed.; APS Press: St. Paul, MN, USA, 2015; ISBN 978-0890544792. [Google Scholar]
- Baša Česnik, H.; Gregorčič, A.; Čuš, F. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia. Food Addit. Contam. 2008, 25, 438–443. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.M.; Cabitza, F.; Pala, M.; Farris, G.A. Fenhexamid residues in grapes and wine. Food Addit. Contam. 2001, 18, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Tsiropoulos, N.G.; Miliadis, G.E.; Likas, D.T.; Liapis, K. Residues of spiroxamine in grapes following field application and their fate from vine to wine. J. Agric. Food Chem. 2005, 53, 10091–10096. [Google Scholar] [CrossRef]
- European Commission. New rules on pesticide residues in food. In EU Legislation on MRLs; European Commission: Brussels, Belgium, 2008; Available online: https://ec.europa.eu/food/plant/pesticides/max_residue_levels/eu_rules_en (accessed on 16 February 2021).
- Codex Alimentarius Commission. Guidelines on Good Laboratory Practice in Pesticide Residue Analysis, CAC/GL 40-1993. Rev.1-2003; Codex Alimentarius Commission: Rome, Italy, 2013; Available online: www.fao.org/input/download/standards/378/cxg_040e.pdf (accessed on 30 October 2020).
- European Food Safety Authority. Annual Report; EFSA: Parma, Italy, 2010; ISSN 1725-5791. Available online: www.efsa.europa.eu (accessed on 16 February 2021).
- Bakirci, G.T.; Çinar, E.; Karakaya, S. Pesticide Residues in Grape Leaves Collected from Manisa. Akademik Gıda 2019, 17, 55–60. [Google Scholar] [CrossRef]
- Smaneh, A. Detection of Chlorpyrifos and Penconazole Residues in Grape Leaves and Fruit by GCMS. Master’s Thesis, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine, 2004; 46p. [Google Scholar]
- Kuşaksız, E.K.; Çimer, H. Effect of Different Brine Media on Pesticide Residue Levels in Grapevine (Vitis vinifera var. Sultani çekirdeksiz) Leaves. J. Ege Univ. Fac. Agric. 2019, 56, 267–272. [Google Scholar] [CrossRef]
- Jyot, G.; Arora, P.K.; Sahoo, S.K.; Singh, B.; Battu, R.S. Persistence of trifloxystrobin and tebuconazole on grape leaves, grape berries and soil. Bull. Environ. Contam. Toxicol. 2010, 84, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Deepa, M.; Jagdish, G.K.; Rashmi, N.; Kumar, S.; Prakash, G.S. Fate of fipronil and its metabolites in/on grape leaves, berries and soil under semi-arid tropical climatic conditions. Bull. Environ. Contam. Toxicol. 2015, 84, 587–591. [Google Scholar] [CrossRef]
- Arora, P.K.; Jyot, G.; Singh, B.; Battu, R.S.; Singh, B.; Aulakh, P.S. Persistence of imidacloprid on grape leaves, grape berries and soil. Bull. Environ. Contam. Toxicol. 2009, 82, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Manal, R.; Montasser, H.; Mahmoud, A. Chromatographic determination of azoxystrobin, fenhexamid and lufenuron residues in grapevine. Alex. Sci. Exch. J. 2009, 30, 38–44. [Google Scholar]
- Maestroni, B.M.; Abu Alnaser, A.; Ghanem, I.; Islam, M.; Cesio, V.; Heinzen, H.; Kelly, S.; Cannavan, A. Validation of an Analytical Method for the Determination of Pesticide Residues in Vine Leaves by GC-MS/MS. J. Agric. Food Chem. 2018, 66, 6421–6430. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Main Changes Introduced in Document N° SANTE/12682/2019 with Respect to the Previous Version (Document N° SANTE/11813/2017); European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Patil, R.; Khan, Z.; Pudale, A.; Shinde, R.; Ahammed Shabeer, T.P.; Patil, A.; Banerjee, K. Comprehensive multiresidue determination of pesticides and plant growth regulators in grapevine leaves using liquid- and gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2018, 1532, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Rapid Alert System for Food and Feed (RASSF) Portal Notification 2020.0227 & 2016. ABR. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=searchResultList (accessed on 1 November 2020).
- Holland, P.T.; Hamilton, D.; Ohlin, B.; Skidmore, M.W. Effects of storage and processing on pesticide residues in plant products. Pure Appl. Chem. 1994, 66, 335–356. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation–A review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Mekonen, S.; Ambelu, A.; Spanoghe, P. Effect of Household Coffee Processing on Pesticide Residues as a Means of Ensuring Consumers’ Safety. J. Agric. Food Chem. 2015, 63, 8568–8573. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.B.; Munitz, M.S.; Resnik, S.L. Effect of household rice cooking on pesticide residues. Food Chem. 2021, 342, 128311. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Wang, H.; Yong, W.; Zhang, F.; Sun, L.; Yang, M.L.; Wu, Y.N.; Chu, X.G. The effects of washing and cooking on chlorpyrifos and its toxic metabolites in vegetables. Food Control 2011, 22, 54–58. [Google Scholar] [CrossRef]
- Maestroni, B.M.; Ghanem, I.; Correll, R.; Abu Alnaser, A.; Islam, M.; Cesio, V.; Heinzen, H.; Cannavan, A. Required Withholding Period for Vine Leaves Following Spraying with Pesticide. J. Health Environ. Res. 2018, 4, 140–152. [Google Scholar]
- Mekonen, S.; Ambelu, A.; Spanoghe, P. Reduction of pesticide residues from teff (Eragrostis tef) flour spiked with selected pesticides using household food processing steps. Heliyon 2019, 5, e01740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Pesticide Analytical Manual, 3rd ed.; U.S. Food and Drug Administration: Washington, DC, USA, 1994; Volume I.
- DG-SANCO. Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed; Document No. SANCO/12495/2011; SANCO (European Commission): Brussels, Belgium, 2011; p. 24. [Google Scholar]
- Thompson, M.; Ellison, S.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
Level Spiking (0.01 µg/g) | Level Spiking (0.05 µg/g) | Level Spiking (0.1 µg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pesticide | LOD | LOQ | RM | RSDr | RSDRw | RM | RSDr | RSDRw | RM | RSDr | RSDRw |
(µg/g) | (%) | (%) | (%) | ||||||||
Acetamiprid | 0.002 | 0.006 | 99 | 6 | 6 | 101 | 5 | 4 | 96 | 6 | 7 |
Azoxystrobin | 0.002 | 0.006 | 85 | 12 | 13 | 84 | 7 | 8 | 82 | 8 | 7 |
Bifenthrin | 0.001 | 0.005 | 97 | 9 | 12 | 97 | 4 | 8 | 97 | 5 | 7 |
Boscalid | 0.002 | 0.007 | 90 | 8 | 8 | 87 | 7 | 7 | 84 | 9 | 12 |
Carbendazim | 0.001 | 0.005 | 91 | 8 | 12 | 87 | 12 | 11 | 88 | 7 | 8 |
Chlorpyriphos | 0.001 | 0.004 | 82 | 11 | 12 | 95 | 7 | 10 | 94 | 9 | 11 |
Cypermethrin | 0.002 | 0.006 | 88 | 10 | 15 | 87 | 11 | 10 | 89 | 8 | 12 |
Cyproconazole | 0.001 | 0.003 | 78 | 11 | 12 | 80 | 12 | 14 | 80 | 12 | 13 |
Cyprodinil | 0.002 | 0.008 | 98 | 10 | 13 | 86 | 8 | 10 | 86 | 8 | 12 |
Deltamethrin | 0.001 | 0.004 | 86 | 10 | 12 | 76 | 7 | 8 | 80 | 4 | 7 |
Diazinon | 0.001 | 0.003 | 82 | 14 | 12 | 85 | 7 | 5 | 85 | 5 | 5 |
Difenoconazole | 0.002 | 0.006 | 96 | 14 | 12 | 98 | 11 | 14 | 94 | 12 | 15 |
Dimethoate | 0.002 | 0.007 | 87 | 9 | 7 | 83 | 4 | 5 | 82 | 6 | 10 |
Fenazaquin | 0.002 | 0.007 | 101 | 12 | 8 | 104 | 15 | 16 | 100 | 12 | 12 |
Fenhexamid | 0.001 | 0.004 | 84 | 8 | 7 | 80 | 9 | 7 | 77 | 7 | 8 |
Hexaconazole | 0.002 | 0.006 | 98 | 17 | 15 | 100 | 12 | 14 | 94 | 14 | 16 |
Imazalil | 0.002 | 0.008 | 88 | 17 | 14 | 90 | 14 | 10 | 91 | 12 | 12 |
Imidacloprid | 0.002 | 0.006 | 92 | 17 | 19 | 84 | 7 | 8 | 82 | 11 | 13 |
Indoxacarb | 0.001 | 0.004 | 83 | 17 | 19 | 84 | 13 | 12 | 80 | 14 | 12 |
Kresoxim-methyl | 0.002 | 0.006 | 83 | 10 | 11 | 87 | 9 | 11 | 83 | 8 | 12 |
Lambda-Cyhalothrin | 0.001 | 0.004 | 78 | 14 | 13 | 75 | 8 | 12 | 76 | 8 | 10 |
Lufenuron | 0.002 | 0.006 | 85 | 11 | 14 | 83 | 9 | 12 | 82 | 10 | 13 |
Metalaxyl | 0.002 | 0.006 | 87 | 18 | 16 | 83 | 12 | 14 | 82 | 13 | 12 |
Myclobutanil | 0.001 | 0.004 | 98 | 8 | 10 | 97 | 4 | 7 | 95 | 7 | 6 |
Penconazole | 0.002 | 0.007 | 96 | 12 | 14 | 98 | 10 | 13 | 96 | 14 | 15 |
Propargite | 0.001 | 0.004 | 87 | 8 | 7 | 89 | 8 | 9 | 88 | 7 | 8 |
Propiconazole | 0.001 | 0.005 | 88 | 11 | 14 | 87 | 12 | 12 | 88 | 11 | 12 |
Pyraclostrobin | 0.002 | 0.005 | 75 | 8 | 7 | 75 | 4 | 8 | 78 | 5 | 4 |
Pyridaben | 0.001 | 0.004 | 103 | 14 | 15 | 98 | 12 | 12 | 97 | 11 | 10 |
Pyrimethanil | 0.002 | 0.005 | 90 | 12 | 12 | 89 | 8 | 7 | 87 | 8 | 7 |
Tebuconazole | 0.002 | 0.005 | 94 | 10 | 9 | 95 | 11 | 12 | 92 | 12 | 11 |
Tetraconazole | 0.002 | 0.007 | 95 | 12 | 14 | 95 | 10 | 12 | 94 | 10 | 12 |
Trifloxystrobin | 0.001 | 0.004 | 88 | 10 | 8 | 87 | 7 | 8 | 87 | 7 | 6 |
Pesticide | MRL (mg/kg) | Dry Conservation Brands | Brine Conservation Brands | Stuffed grapevine leaves Brands | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | K | L | T | U | V | F | G | M | N | O | P | W | X | H | I | J | Q | R | S | Y | ||
Lufenuron | 0.02 * | ND | ND | ND | 0.1 | ND | ND | ND | ND | ND | ND | ND | 2.8 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Carbendazim | 0.1 * | 0.07 | 0.1 | 0 | 0.2 | 0.2 | 1.13 | ND | ND | ND | 0.8 | 0 | 0 | 0.4 | 1.3 | 1.3 | ND | ND | 0 | 0.4 | 0 | 0.1 | 0.1 | 0 | ND |
Boscalid | 0.05 * | 13.9 | ND | ND | ND | ND | 3.21 | ND | ND | ND | 1.5 | 2.4 | ND | ND | ND | ND | ND | 3.5 | ND | 1.1 | ND | ND | ND | 0.2 | ND |
Acetamiprid | 0.01 * | 1.48 | 0 | ND | 0.1 | ND | 0.17 | ND | ND | ND | ND | ND | ND | 0.1 | ND | ND | ND | 0.7 | ND | ND | ND | ND | ND | ND | ND |
Imidacloprid | 2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Fenhexamid | 0.05 * | 0.02 | 0 | ND | 0 | 0 | ND | ND | ND | ND | ND | 0.8 | ND | 0 | ND | ND | ND | ND | 0 | 0 | ND | ND | ND | ND | ND |
Imazalil | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Chlorpyrifos | 0.05 * | 0.44 | 0.1 | 0.1 | 0.1 | 0.1 | 0.05 | ND | ND | ND | 0.7 | 0.1 | 0.6 | 0.1 | 0.9 | 1.2 | ND | 1.6 | 0.1 | 0.1 | 0.1 | ND | ND | ND | ND |
Diazinon | 0.01 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Dimethoate | 0.02 * | ND | ND | ND | ND | ND | ND | ND | ND | 0.2 | ND | ND | ND | ND | ND | ND | 0.2 | 0.2 | ND | ND | ND | ND | ND | ND | 0.2 |
Indoxacarb | 0.02 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.9 | ND | ND | ND | ND | ND | ND | 1 |
Metalaxyl | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0 | ND | ND | ND | ND | ND | ND | 1.4 | ND | ND | ND | ND | ND | ND | ND |
Bifenthrin | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0 | ND | ND | ND | ND | ND |
Cypermethrin | 0.05 * | ND | ND | ND | 0.5 | ND | 5.62 | ND | ND | ND | ND | ND | ND | 0.2 | ND | 1.8 | ND | ND | ND | ND | 0.2 | ND | ND | ND | ND |
Deltamethrin | 0.5 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Lambda-Cyhalothrin | 0.02 * | 0.08 | 0.1 | 1 | 0.1 | 0.1 | 0.06 | ND | ND | ND | 0.1 | 0.1 | 0.1 | 1.1 | ND | ND | ND | ND | 0.1 | 0.1 | 0.1 | ND | ND | ND | ND |
Pyridaben | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Cyprodinil | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Pyrimethanil | 0.01 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.4 | ND | ND | ND | ND | ND | ND | ND | ND | 0 | ND | ND | ND | ND | ND |
Fenazaquin | 0.01 * | 0.59 | 0.3 | 0.4 | 0.5 | 0.8 | 0.5 | 0.1 | 0.2 | 0.3 | ND | ND | ND | 0.1 | 0.2 | 0.2 | ND | ND | ND | ND | ND | 0.1 | 0.1 | ND | ND |
Azoxystrobin | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | 1.1 | ND | ND | ND | 0.1 | ND | ND | 0.9 | ND | 0.2 | ND | ND | ND | 0 | ND |
Kresoxim-methyl | 0.05 * | 9.61 | ND | ND | ND | ND | 20.7 | ND | ND | 8.8 | 0.2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Pyraclostrobin | 0.02 * | 0.02 | 0 | 0 | 0 | 0 | ND | ND | ND | ND | 0 | 0.2 | 0 | ND | ND | ND | ND | ND | 0 | 0 | 0 | ND | ND | ND | ND |
Trifloxystrobin | 0.02 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.1 |
Propargite | 0.01 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.7 | ND | ND | ND | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | 0.1 | ND |
Cyproconazole | 0.05 * | 0.01 | 0 | 0.1 | 0.1 | 0 | 0.01 | ND | ND | ND | 0 | 0 | 0.1 | 0 | ND | ND | 0.1 | ND | 0 | 0 | 0 | ND | ND | ND | ND |
Difenoconazole | 0.05 * | 0.01 | 0.2 | ND | ND | ND | ND | ND | ND | 0.3 | ND | ND | 0 | 4.9 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Hexaconazole | 0.01 * | 0.02 | ND | 0 | 0.3 | 0 | 0.02 | ND | ND | ND | ND | 0 | 0.6 | ND | ND | ND | ND | ND | 0.1 | 0 | 0 | ND | ND | ND | ND |
Myclobutanil | 0.02 * | ND | ND | 2.4 | 0 | ND | ND | ND | ND | ND | 0.1 | 0.4 | 1.8 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Penconazole | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.1 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Propiconazole | 0.05 * | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.1 | ND | ND | ND | ND | ND | ND |
Tebuconazole | 0.02 * | 0.01 | 0 | ND | 0 | 0 | 0.01 | ND | ND | ND | 0.6 | 0 | 0 | 0 | ND | ND | ND | 0.6 | 0 | 0 | 0 | ND | ND | 0.1 | ND |
Tetraconazole | 0.02 * | ND | ND | ND | ND | ND | 0.03 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.1 | ND |
Time (Months) Θ | 1 | 2 | 1 | 13 | 13 | 8 | ND | 14 | 8 | 2 | 12 | 15 | 14 | 3 | 3 | 8 | 9 | 9 | 1 | 7 | 3 | 3 | 5 | 3 | |
Nr. pesticide/sample | 13 | 10 | 8 | 13 | 9 | 12 | 1 | 1 | 4 | 14 | 11 | 10 | 10 | 4 | 4 | 2 | 8 | 9 | 12 | 8 | 2 | 2 | 6 | 3 | |
Nr. pesticide >MRL | 7 | 5 | 5 | 10 | 5 | 9 | 1 | 1 | 4 | 11 | 5 | 6 | 7 | 4 | 4 | 2 | 8 | 3 | 7 | 3 | 1 | 1 | 4 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayar, S.; Zeitoun, R.; Maestroni, B.M. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules 2021, 26, 1176. https://doi.org/10.3390/molecules26041176
Hayar S, Zeitoun R, Maestroni BM. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules. 2021; 26(4):1176. https://doi.org/10.3390/molecules26041176
Chicago/Turabian StyleHayar, Salem, Rawan Zeitoun, and Britt Marianna Maestroni. 2021. "Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods" Molecules 26, no. 4: 1176. https://doi.org/10.3390/molecules26041176
APA StyleHayar, S., Zeitoun, R., & Maestroni, B. M. (2021). Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules, 26(4), 1176. https://doi.org/10.3390/molecules26041176