Antifungal Activity of New Diterpenoid Alkaloids Isolated by Different Chromatographic Methods from *Delphinium Peregrinum L. Var. Eriocarpum Boiss*

Mohammad Alhilal 1,*, Yaser A.M. Sulaiman 2, Suzan Alhilal 3, Sobhi M. Gomha 4,5,* and Salama A. Ouf 6

¹ Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey

² Department of Clinical Laboratory Science, College of Pharmacy, Tikrit University, Tikrit 34001, Iraq; neimiyaser@tu.edu.iq

³ Department of Chemistry, Faculty of Science, University of Albaath, Homs, Syria, Erzurum 25070, Turkey; salkm13@gmail.com

⁴ Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt

⁵ Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia

⁶ Botany & Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; saoufeg@yahoo.com

* Correspondence: mohammad.alhilal15@ogr.atauni.edu.tr or dr.mkh.1981@gmail.com (M.A.); sm.gomha@iu.edu.sa or s.m.gomha@gmail.com (S.M.G.)

Table of Contents:

Fig. S1a. The IR spectrum of Delcarpum (1) in CHCl₃.

Fig. S1b. The EIMS spectrum of Delcarpum (1).

Fig. S1c. The ¹H-NMR spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1d. The ¹³C-NMR spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1e. The DEPT-135 expand spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1f. The ¹H/¹³C HMQC spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1g. The ¹H/¹H DQF-COSY spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1a-g. Spectral characterization of Delcarpum (1)

Fig. S2a. The IR spectrum of Delphitisine (3) in CHCl₃.

Fig. S2b. The EIMS spectrum of Delphitisine (3).

Fig. S2c. The ¹H-NMR spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2d. The ¹³C-NMR spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2e. The DEPT-135 spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2f. The ¹H/¹³C HMQC spectrum of Delphitisine (**3**) in CDCl₃ Bruker 300 MHz.

Fig. S2g. The ¹H/¹H DQF-COSY spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2a-g. Spectral characterization of Delphitisine (3).

Fig. S3a The IR spectrum of Hydrodavisine (4) in MeOH.

Fig. S3b. The EIMS spectrum of Hydrodavisine (**4**)

Fig. S3c. The ¹H-NMR spectrum of Hydrodavisine (4)in CD₃OD Bruker 300 MHz.

Fig. S3d. The ¹³C-NMR spectrum of Hydrodavisine (**4**)in CD₃OD Bruker 300 MHz.

Fig. S3e. The DEPT-135 spectrum of Hydrodavisine (4)in CD₃OD Bruker 300 MHz.

Fig. S3f. The DEPT-90 spectrum of Hydrodavisine (**4**) in CD₃OD Bruker 300 MHz.

Fig. S3g. The ¹H/¹³C HMQC spectrum of Hydrodavisine (4)in CD₃OD Bruker 300 MHz.

Fig. S3h. The ¹H/¹H COSY spectrum of Hydrodavisine (**4**) in CD₃OD Bruker 300 MHz.

Fig. S3a-h. Spectral characterization of Hydrodavisine (4).

Table S1.¹H, ¹H COSY(Correlation Spectroscopy Homonuclear) and HMQC(Heteronuclear Multiple Quantum Coherence) NMR data for Delcarpum (**1**).

Table S2. ¹H, ¹HCOSY(Correlation Spectroscopy Homonuclear) and HMQC (Heteronuclear Multiple Quantum Coherence) NMR data for Peregrine (**2**).

Table S3. ¹H, ¹HCOSY(*Correlation Spectroscopy Homonuclear*) and HMQC (Heteronuclear Multiple Quantum *Coherence*) NMR data. for Delphitisine **(3)**.

Table S4. ¹H, ¹HCOSY (*Correlation Spectroscopy Homonuclear*) and HMQC (*Heteronuclear Multiple Quantum Coherence*) NMR data for *Hydrodavisine* **4**.

Fig. S1a. The IR spectrum of Delcarpum (1) in CHCl₃.

Fig. S1b. The EIMS spectrum of Delcarpum (1).

Fig. S1c. The ¹H-NMR spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1d. The ¹³C-NMR spectrum of Delcarpum (1) in CDCl₃ Bruker 300 MHz.

Fig. S1e. The DEPT-135 expand spectrum of Delcarpum (1) in $CDCl_3$ Bruker 300 MHz.

Fig. S1f. The ¹³C/¹H HMQC spectrum of Delcarpum (**1**) in CDCl₃ Bruker 300 MHz.

Fig. S1g. The ¹H/¹H DQF-COSY spectrum of Delcarpum (**1**) in CDCl₃ Bruker 300 MHz.

Fig. S1a-g. Spectral characterization of Delcarpum (1)

Fig. S2a. The IR spectrum of Delphitisine (3) in CHCl₃.

Fig. S2b. The EIMS spectrum of Delphitisine (3).

Fig. S2c. The ¹H-NMR spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2d. The ¹³C-NMR spectrum of Delphitisine (3) in CDCl₃ Bruker 300 MHz.

Fig. S2e. The DEPT-135 spectrum of Delphitisine (**3**) in CDCl₃ Bruker 300 MHz.

Fig. S2f. The ¹³C/¹H HMQC spectrum of Delphitisine (**3**) in CDCl₃ Bruker 300 MHz.

Fig. S2a-g. Spectral characterization of Delphitisine (3).

Fig. S3a. The IR spectrum of Hydrodavisine (4) in MeOH.

Fig. S3b. The EIMS spectrum of Hydrodavisine (4).

Fig. S3c. The ¹H-NMR spectrum of Hydrodavisine (4) in CD₃OD Bruker 300 MHz.

Fig. S3d. The ¹³C-NMR spectrum of Hydrodavisine (4) in CD₃OD Bruker 300 MHz.

Fig. S3e. The DEPT-135 spectrum of Hydrodavisine (4) in CD₃OD Bruker 300 MHz.

Fig. S3f. The DEPT-90 spectrum of Hydrodavisine (4) in CD_3OD Bruker 300 MHz.

Fig. S3g. The ${}^{13}C/{}^{1}H$ HMQC spectrum of Hydrodavisine (4) in CD₃OD Bruker 300 MHz.

Fig. S3a-h. Spectral characterization of Hydrodavisine (4)

Proton		Correlated atom	
		HMQC	COSY
1	3.22 <i>m</i>	82.3 d	H-2 α , H-2 β , H-12 α (vw)
2α	1.87 <i>m</i>	$\mathbf{D}\mathbf{A}\mathbf{C}\mathbf{A}$	H-2β, H-3, H-1
2β	2.15 -	24.0 l	H-2 <i>α</i> , H-3, H-1
3	1.25 <i>m</i>	.288 t	H-2 <i>b</i> , H-2 <i>α</i>
5	1.50 <i>s</i>	54.0 d	H-17(<i>m</i>), H-7, H-6α
6α	5.29 d (7.53)	71.4 d	H-7, H-5
7	3.17 -	35.2 d	H-6α, H-5
9	3.35 -	.406 d	H-14, H-10
10	2.15 -	44.3 d	H-9, H-12α, H-12β (w)
12α	1.97 -	28.2.4	H-12β, H-13, H-10, H-1(vw)
12β	2.50 dd (3.17, 12.6)	28.2 t	H-12 <i>α</i> , H-10 (<i>w</i>)
13	2.32 t (5.54)	36.4 d	H-12 <i>a</i> , H-14
14β	4.67 t (4.71)	75.1 <i>d</i>	H-13, H-9, H-16α (vw)
15β	4.18 d (6.91)	74.1 d	H-16a
16α	3.11 -	91.4 d	H-15α, H-14 (vw), H-16' (v.w)
17	3.22 -	62.8 d	H-5
18	$0.85 \ s$	25.2 q	H-3, H-6"
19α	2.08 d (5.78)	56.8 t	Η-19β
19β	2.86 d (11.93)		H-19 <i>a</i>
20α	2.63 m	40 E /	H-20β, H-21
20β	2.72 m	48.5 <i>t</i>	H-20 <i>a</i> , H-21
21	1.14 t (6.99)	11.9 q	Η-20α, Η-20β
14''	1.97 -	20.2 q	-
6''	1.97 -	20.6 q	H-18
8'	3.17 -	48.6 q	-
1'	3.32 s	55.0 q	-
16'	3.45 s	56.2 g	H-16 α (v.w)

Table S1. ¹H, ¹H COSY (Correlation Spectroscopy Homonuclear) and HMQC(Heteronuclear Multiple Quantum Coherence) NMR data for Delcarpum (**1**).

Proton		Correlated atom	
		HMQC	COSY
1	3.11-	84.1	H-2 $lpha$, H-2 eta , H-1'
2α	2.01 -	25.9	H-2β H-1
2β	2.08 -		H-2 <i>a</i> H-1
3α	1.25 -	.365	Η-3β
3β	1.57 -		H-3a
5	1.48 s	55.7	H-17
6	5.25 d (7.28)	72.8	H-7
7	2.75 d (7.29)	41.7	H-6
9	3.05 -	44.0	H-14, H-10
10	2.01 -	45.6	H-9
12α	1.88 m	28.0	H-12β, H-13 , H-10 H-17(v.w)
12β	2.25 dd (5.31)		H-12 <i>α</i> , H-10(w)
13	2.35 t (5.67)	37.9	H-12 α (w)
			H-12 β (m), H-14
14	4.02 q (10.59)	74.8	H-13, H-9, H-14' (OH)(w)
15	2.08 -	32.5	H-16
16	3.39 -	81.9	H-15
17	3.16 d (2.07)	64.3	H-5(m), H-1' (v.w)
18	0.85 s	25.3	-
19α	2.08 -	.569	H-19β
19β	2.61 d (11.90)		H-19α
20	2.47 m	48.7	H-21
21	1.07 t (7.12)	13.1	H-20
1'	3.28 s	55.6	H-1(v.w)
			H-17(v.w)
6''	2.08 -	21.2	-
8'	3.11 -	47.7	-
16'	3.39 -	.559	-
14' (OH)	3.70 d (6.48)	-	-

Table S2. ¹H, ¹HCOSY(Correlation Spectroscopy Homonuclear) and HMQC(Heteronuclear Multiple Quantum Coherence) NMR data for Peregrine (**2**).

Proton		Correlated atom	
		HMQC	COSY
1α	2.67 s	73.3	H-20
2α	1.79 m	25.1	H-2β H-3
2β	1.94 m		Η-2 α
3	1.29 m	28.1	H-2 <i>α</i> , H-18(<i>w</i>)
4	-	35.7	-
5	1.99 m	54.1	H-7β (w)
6	4.23 m	64.2	Η-7α
7α	1.29 m	2(0	H-7b , H-6
7β	1.79 m	26.0	Η-7α
8	-	44.1	-
9	2.26 d (2.29)	31.8	Η-11α, Η-13β
10	-	53.4	-
11α	1.10 <i>m</i>	21.2	H-11β, H-12(w)
11β	1.79 m	31.3	H-11α , H-12
12	2.07 m	39.8	H-11β, H-11α (w)
13α	1.79 m		$ ext{H-13}eta$, $ ext{H-14}$
13β	1.94 m	23.4	H-13α , H-9
14	2.07 m	41.1	Η-13α
15α	4.05 s	69.4	H-17
16	-	154.1	-
17	4.99 d (7.60)	107.6	Η-15α
18	$1.08 \ s$	26.7	H-3(<i>w</i>)
19α	2.50 d (12.45)	60.1	Η-19β
19β	2.69 d (12.44)		Η-19α
20	3.56 m	64.4	H-1, H-21 $lpha$, H-21 eta
21α	1.79 m	30.4	H-21β, H-20
21β	2.07 m		H-21 <i>a</i> , H-20
1'-OH	1.77 m	-	
15'-OH	1.77 m	-	

Table S3. ¹**H**, ¹**HCOSY**(*Correlation Spectroscopy Homonuclear*) *and HMQC*(*Heteronuclear Multiple Quantum Coherence*) **NMR data. for Delphitisine (3).**

Proton		Correlated atom	
		HMQC	COSY
1α	3.10 <i>s</i>	72.9	H-20
2	1.38 m	31.5	H-3 $lpha$, H3 eta
3α	1.84 <i>m</i>	25.9	H-3β ,H-2
3β	1.90 <i>m</i>		Η-3α
4	-	35.4	-
5	2.21 <i>m</i>	54.0	H-20, H-11
6	4.20 s	63.6	H-7
7	1.84 <i>m</i>	25.9	H-6, H-9
8	-	36.3	-
9	2.25 m	33.1	H-14, H-20, H-7, H-13 eta
10	-	54.2	-
11	1.70 <i>m</i>	30.9	H-5, H-13β, H-20
12	2.11 <i>m</i>	42.3	H-9, H-13β
13α	1.38 m	26.6	H-13β, H-9
13β	1.84 <i>m</i>		H-13α, H-12, H-11, H-9, H-14
14	2.11 <i>m</i>	41.4	H-9, H-13β
15α	3.99 s	69.5	H-17
16	-	154.2	-
17	5.01 d (7.21)	108.1	Η-15α
18	1.16 s	26.6	-
19	2. 86 q (12.29)	59.4	-
20	3.93 s	66.3	H-1α, H9, H-5, H-11
-*NH	3.74 <i>m</i> (+NH)	-	-
1'-OH	4.89 br. s	-	-
15'-OH	4.89 br. s	-	-
$2H_2O$	4.89 br. s	-	-

Table S4. ¹H, ¹HCOSY (*Correlation Spectroscopy Homonuclear*) and HMQC(*Heteronuclear Multiple Quantum Coherence*)NMR data for *Hydrodavisine 4*.