Supplementary Materials

Semi-synthesis of Harringtonolide Derivatives and Their Antiproliferative Activity

Xiutao Wu¹, Lijie Gong¹, Chen Chen¹, Ye Tao¹, Wuxi Zhou¹, Lingyi Kong^{1,*} and Jianguang Luo^{1,*}

¹ State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; wxtcpuer@163.com (X.W.); jieligong313@163.com (L.G.); chenchen02544@163.com (C.C.); tycpuer@163.com (T.Y.); zhouwuxi1988@163.com (W.Z.);

* Correspondence: cpu_lykong@126.com (L.K.); luojg@cpu.edu.cn (J.L.); Tel.: +86-025-8327-1405 (L.K. & J.L.)

Table of Contents

Scheme S1	2
Scheme S2	2
Figure S1: NMR spectra for all compounds	3
Compound 2	3
Compound 3	4
Compound 4	5
Compound 5	6
Compound 6	7
Compound 7	8
Compound 8	9
Compound 9	
Compound 10	
ROESY Spectra of compound 10	
Compound 10a	
Compound 10b	14
Compound 10c	15
Compound 10d	
Compound 10e	
Compound 10f	
Compound 11	
Compound 12	
References	

Scheme S1

A possible mechanism for the formation of **7** is presented in Scheme S1. The initial oxidation of allylic in HO (1) by SeO₂ was accompanied by the formation of $HSeO_2^-$ anion [1] and carbocation, which would rearrange to cycloheptatriene carbocation. Subsequently, $HSeO_2^-$ attacked the cycloheptatriene carbocation, while that followed by electrocyclic annulation to give cyclopropanes intermediate. The subsequent elimination of Se and H₂O led to the cyclopropenone intermediate [2-3], which then attacked by oxygen anion. Subsequent rearrangement occurs in the manner as indicated arrows, giving carboxylic acid intermediate. Further decarboxylation [4] of this intermediate and oxidation by SeO₂ would yield compound **7**.

Scheme S2

A possible mechanism for the formation of 9 is presented in Scheme S2. Under the attacked of nucleophile (methoxy anion), leaving of bromine atoms in compound 8 yield an allylic carbocation, which then rearranged to a more stable form–cycloheptatriene carbocation too. Subsequently, this carbocation intermediate was attacked by methoxy anion, and then further electron transfer occurs in the manner as indicated arrows to produce 9.

Figure S1: NMR spectra for all compounds

¹³C-NMR spectrum (151 MHz, CDCl₃) for 2

Compound 3

¹³C-NMR spectrum (126 MHz, CDCl₃) for 3

Compound 4

¹³C-NMR spectrum (151 MHz, CDCl₃) for 4

Compound 5

¹³C-NMR spectrum (151 MHz, CDCl₃) for 5

¹³C-NMR spectrum (151 MHz, CDCl₃) for 6

¹³C-NMR spectrum (151 MHz, CDCl₃) for 7

¹³C-NMR spectrum (126 MHz, CDCl₃) for 8

Compound 9

¹³C-NMR spectrum (151 MHz, CDCl₃) for 9

¹³C-NMR spectrum (151 MHz, CDCl₃) for 10

ROESY Spectra of compound 10

ROESY Spectra of compound 10

ROESY correlations of compound 10

Compound 10a

¹³C-NMR spectrum (126 MHz, CDCl₃) for 10a

Compound 10b

¹³C-NMR spectrum (126 MHz, CDCl₃) for 10b

Compound 10c

¹³C-NMR spectrum (151 MHz, CDCl₃) for 10c

Compound 10d

¹³C-NMR spectrum (151 MHz, CDCl₃) for 10d

Compound 10e

¹³C-NMR spectrum (151 MHz, CDCl₃) for 10e

Compound 10f

¹³C-NMR spectrum (151 MHz, CDCl₃) for 10f

¹³C-NMR spectrum (151 MHz, MeOD) for 11

¹³C-NMR spectrum (151 MHz, CDCl₃) for 12

References

- Demidov, M.R.; Lapshina, M.Yu.; Osipov, D.V.; Osyanin, V.A.; Klimochkin, Y.N. Oxidative Rearrangement of 4H-Chromenes to 2-Aroylbenzofurans in the Presence of Selenium Dioxide. *Chem Heterocycl Comp* 2017, 53, 1053–1056, doi:10.1007/s10593-017-2169-7.
- 2. Morita, S.; Yoshimura, T.; Matsuo, J. Intramolecular Büchner Reaction and Oxidative Aromatization with SeO₂ or O₂. *Chem. Pharm. Bull.* **2019**, 67, 729–732, doi:10.1248/cpb.c19-00243.
- 3. Karimi, S.; Ma, S.; Ramig, K.; Greer, E.M.; Szalda, D.J.; Subramaniam, G. Oxidative Ring-Contraction of 3*H*-1-Benzazepines to Quinoline Derivatives. *Tetrahedron Letters* **2015**, 56, 6886–6889, doi:10.1016/j.tetlet.2015.10.094.
- 4. Maier, W.F., Roth, W., Thies, I., Schleyer, P.V.R. Hydrogenolysis, iv. gas phase decarboxylation of carboxylic acids. *Chem. Ber.* **1982**, 115, 808-812, doi:10.1002/cber.19821150245