Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characteristics
2.2. Oxidative Characteristics
2.2.1. Redox Potential Determination
2.2.2. Antioxidant Activity Determination
2.2.3. Lipid Oxidation and MDA Content
2.2.4. Protein Oxidation and Carbonyl Content
2.2.5. Protein Denaturation and the FAST Index
2.2.6. Discriminant Analysis
2.2.7. Interactions between MDA and Carbonyl Content
3. Materials and Methods
3.1. Reagents and Standards
3.2. Buffalo Mozzarella Cheese Production
3.3. Analyzed Samples
3.4. Physical and Chemical Analysis
3.5. Redox Potential Determination
3.6. Antioxidant Activity—DPPH Method
3.7. Malondialdehyde Analysis
3.8. Carbonyl Determination
3.9. FAST Method
- Fluorescence of tryptophan at 290 nm excitation and 340 nm emission (Trp-F)
- Fluorescence of advanced Maillard’s products at 350 nm excitation and of 440 nm emission (AMP-F) and expressed in arbitrary units (a.u)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Commission Regulation (EC) No 1107/96 of 12 June 1996 on the registration of geographical indications and designations of origin under the procedure laid down in Article 17 of Council Regulation (EEC) No 2081/92. J. Eur. Union 1996, 148, 1–10.
- CLAL-Italia: Produzioni di Formaggi DOP. Available online: https://www.clal.it/index.php?section=formaggi_dop (accessed on 18 February 2021).
- Fedele, E.; Bergamo, P. Protein and lipid oxidative stresses during cheese manufacture. J. Food Sci. 2001, 66, 932–935. [Google Scholar] [CrossRef]
- Balestrieri, M.; Spagnuolo, M.S.; Cigliano, L.; Storti, G.; Ferrara, L.; Abrescia, P.; Fedele, E. Evaluation of oxidative damage in mozzarella cheese produced from bovine or water buffalo milk. Food Chem. 2002, 77, 293–299. [Google Scholar] [CrossRef]
- Unal, G. Antioxidant activity of commercial dairy products. Agro Food Ind. Hi Tech 2012, 23, 39–42. [Google Scholar]
- Lindmark-Månsson, H.; Åkesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 2007, 90, 4884–4896. [Google Scholar] [CrossRef]
- De la Torre-Santos, S.; Royo, L.J.; Martínez-Fernández, A.; Chocarro, C.; Vicente, F. The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile of milk. Foods 2020, 9, 1256. [Google Scholar] [CrossRef]
- Agustinho, B.C.; Zeoula, L.M.; Santos, N.W.; Machado, E.; Yoshimura, E.H.; Ribas, J.C.R.; Bragatto, J.M.; Stemposki, M.R.; Dos Santos, V.J.; Faciola, A.P. Effects of flaxseed oil and vitamin e supplementation on digestibility and milk fatty composition and antioxidant capacity in water buffaloes. Animals 2020, 10, 1294. [Google Scholar] [CrossRef]
- Ahmad, S.; Anjum, F.M.; Huma, N.; Sameen, A.; Zahoor, T. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J. Anim. Plant Sci. 2013, 23, 62–74. [Google Scholar]
- Abd El-Salam, M.H.; El-Shibiny, S. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Citta, A.; Folda, A.; Scalcon, V.; Scutari, G.; Bindoli, A.; Bellamio, M.; Feller, E.; Rigobello, M.P. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Sci. Nutr. 2017, 5, 1079–1087. [Google Scholar] [CrossRef]
- Bergamo, P.; Fedele, E.; Balestrieri, M.; Abrescia, P.; Ferrara, L. Measurement of malondialdehyde levels in food by high-performance liquid chromatography with fluorometric detection. J. Agric. Food Chem. 1998, 46, 2171–2176. [Google Scholar] [CrossRef]
- Mortensen, G.; Bertelsen, G.; Mortensen, B.K.; Stapelfeldt, H. Light-induced changes in packaged cheeses—A review. Int. Dairy J. 2004, 14, 85–102. [Google Scholar] [CrossRef]
- Raia, G.; Fedele, E.; Balestrieri, M.; Bergamo, P. Specific and Sensitive HPLC Method for Malondialdehyde Measurement in Milk and Cheese in Proceedings of the Food and Health: Role of Animal Products; Enne, G., Greppi, G.F., Eds.; Elsevier Press: Amsterdam, The Netherlands, 1996; pp. 205–209.
- Kastrup Dalsgaard, T.; Sørensen, J.; Bakman, M.; Vognsen, L.; Nebel, C.; Albrechtsen, R.; Nielsen, J.H. Light-induced protein and lipid oxidation in cheese: Dependence on fat content and packaging conditions. Dairy Sci. Technol. 2010, 90, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, C.; Ullah, N.; Cao, J.; Lan, Y.; Ge, W.; Hackman, R.M.; Li, Z.; Chen, L. Susceptibility of whey protein isolate to oxidation and changes in physicochemical, structural, and digestibility characteristics. J. Dairy Sci. 2015, 98, 7602–7613. [Google Scholar] [CrossRef] [Green Version]
- Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J.C.; Guy, P.A. Modifications of milk constituents during processing: A preliminary benchmarking study. Int. Dairy J. 2006, 16, 728–739. [Google Scholar] [CrossRef]
- Augustyniak, E.; Adam, A.; Wojdyla, K.; Rogowska-Wrzesinska, A.; Willetts, R.; Korkmaz, A.; Atalay, M.; Weber, D.; Grune, T.; Borsa, C.; et al. Validation of protein carbonyl measurement: A multi-centre study. Redox Biol. 2015, 4, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadtman, E.R. Protein oxidation and aging. Science 1992, 257, 1220–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaber, S.M.; Johansen, A.G.; Schüller, R.B.; Devold, T.G.; Rukke, E.O.; Skeie, S.B. Effect of freezing temperatures and time on mineral balance, particle size, rennet and acid coagulation of casein concentrates produced by microfiltration. Int. Dairy J. 2020, 101, 104563. [Google Scholar] [CrossRef]
- Zaritzky, N.E. Factors Affecting the Stability of Frozen Foods in Managing Frozen Foods; Kennedy, C.J., Ed.; Woodhead Publishing Limited and CRC Press LLC: Cambridge, UK, 2000; pp. 111–135. [Google Scholar]
- Needs, E.C. Effects of long-term deep-freeze storage on the condition of the fat in raw sheep’s milk. J. Dairy Res. 1992, 59, 49–55. [Google Scholar] [CrossRef]
- Zhang, R.H.; Mustafa, A.F.; Ng-Kwai-Hang, K.F.; Zhao, X. Effects of freezing on composition and fatty acid profiles of sheep milk and cheese. Small Rumin. Res. 2006, 64, 203–210. [Google Scholar] [CrossRef]
- Manzo, N. On the Possibility to Trace Frozen Curd in Buffalo Mozzarella PDO Cheese. Ph.D. Thesis, University of Naples Federico II, Napoli, Italy, 2017. [Google Scholar]
- Manzo, N.; Biondi, L.; Nava, D.; Capuano, F.; Pizzolongo, F.; Fiore, A.; Romano, R. On the possibility to trace frozen curd in buffalo mozzarella cheese. J. Food Res. 2017, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Valverde, C.; Ruiz, R.; Medrano, A. Effects of frozen and other storage conditions on α-tocopherol content of cow milk. J. Dairy Sci. 1993, 76, 1520–1525. [Google Scholar] [CrossRef]
- Addeo, F.; Chianese, L.; Scudiero, A.; Cappuccio, U.; Chemin, S.; Cavella, S.; Masi, P. Impiego di latte congelato per la produzione di formaggio mozzarella di bufala. Il latte 1992, 17, 1018–1025. [Google Scholar]
- Alichanidis, E.; Polychroniadou, A.; Tzanetakis, N.; Vafopoulou, A. Teleme cheese from deep-frozen curd. J. Dairy Sci. 1981, 64, 732–739. [Google Scholar] [CrossRef]
- Citro, A. Classificazione dei formaggi a pasta filata e tecnologia di produzione. AIVEMP Newsl. 2010, 7, 8–12. [Google Scholar]
- Mucchetti, G.; Neviani, E. Microbiologia e Tecnologia Lattiero-Casearia; Tecniche Nuove: Milano, Italy, 2006. [Google Scholar]
- Faccia, M.; Gambacorta, G.; Natrella, G.; Caponio, F. Shelf life extension of Italian mozzarella by use of calcium lactate buffered brine. Food Control. 2019, 100, 287–291. [Google Scholar] [CrossRef]
- Shelef, L.A. Antimicrobial effects of lactates: A review. J. Food Prot. 1994, 57, 445–450. [Google Scholar] [CrossRef]
- Tripaldi, C.; Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Campagna, M.C.; Di Russo, C.; Zottola, T. Chemical and microbiological characteristics of homogenised ricotta cheese produced from buffalo whey. Ital. J. Food Sci. 2020, 32, 292–309. [Google Scholar] [CrossRef]
- Mucchetti, G.; Carminati, D.; Pirisi, A. Ricotta fresca vaccina ed ovina: Osservazioni sulle tecniche di produzione e sul prodotto. Latte 2002, 27, 154–166. [Google Scholar]
- Noyhouzer, T.; Kohen, R.; Mandler, D. A new approach for measuring the redox state and redox capacity in milk. Anal. Methods 2009, 1, 93–99. [Google Scholar] [CrossRef]
- Caldeo, V. Oxidation-Reduction Potential and Its Influence on Cheddar Cheese Quality. Ph.D. Thesis, University College Cork, Cork, Ireland, 2015. [Google Scholar]
- Abraham, S.; Cachon, R.; Colas, B.; Feron, G.; De Coninck, J. Eh and pH gradients in Camembert cheese during ripening: Measurements using microelectrodes and correlations with texture. Int. Dairy J. 2007, 17, 954–960. [Google Scholar] [CrossRef]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Cloetens, L.; Panee, J.; Åkesson, B. The antioxidant capacity of milk—The application of different methods in vitro and in vivo. Cell. Mol. Biol. 2013, 59, 43–57. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Batool, M.; Nadeem, M.; Imran, M.; Gulzar, N.; Shahid, M.Q.; Shahbaz, M.; Ajmal, M.; Khan, I.T. Impact of vitamin e and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids Health Dis. 2018, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Branciari, R.; Ranucci, D.; Trabalza-Marinucci, M.; Codini, M.; Orru, M.; Ortenzi, R.; Forte, C.; Ceccarini, M.R.; Valiani, A. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the raw milk of ewes fed L. leaves. Int. J. Food Sci. Technol. 2015, 50, 558–565. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ajmal, M.; Ali, S. Antioxidant activity, fatty acids characterization and oxidative stability of Gouda cheese fortified with mango (Mangifera indica L.) kernel fat. J. Food Sci. Technol. 2018, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Effect of heat-treatment on the antioxidant and pro-oxidant activity of milk. Int. Dairy J. 2004, 14, 421–427. [Google Scholar] [CrossRef]
- Soyer, A.; Özalp, B.; Dalmiş, Ü.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Leszczynski, D.E.; Bechtel, P.J.; Kummerow, F.A. Effects of frozen storage and cooking on lipid oxidation in chicken meat. J. Food Sci. 1984, 49, 838–843. [Google Scholar] [CrossRef]
- Abdel-Kader, Z.M. Lipid oxidation in chicken as affected by cooking and frozen storage. Nahrung Food 1996, 40, 21–24. [Google Scholar] [CrossRef]
- Reitznerová, A.; Uleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules 2017, 22, 1988. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.; Shaltiel, S.; Standtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar]
- Baron, C.P.; Kjærsgård, I.V.H.; Jessen, F.; Jacobsen, C. Protein and lipid oxidation during frozen storage of rainbow trout (Oncorhynchus mykiss). J. Agric. Food Chem. 2007, 55, 8118–8125. [Google Scholar] [CrossRef]
- Utrera, M.; Parra, V.; Estévez, M. Protein oxidation during frozen storage and subsequent processing of different beef muscles. Meat Sci. 2014, 96, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Ventanas, S.; Heinonen, M.; Puolanne, E. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging. J. Agric. Food Chem. 2011, 59, 5435–5443. [Google Scholar] [CrossRef] [PubMed]
- Birlouez-Aragon, I.; Nicolas, M.; Metais, A.; Marchond, N.; Grenier, J.; Calvo, D. A rapid fluorimetric method to estimate the heat treatment of liquid milk. Int. Dairy J. 1998, 8, 771–777. [Google Scholar] [CrossRef]
- Tessier, F.J.; Gadonna-Widehem, P.; Laguerre, J.C. The fluorimetric FAST method, a simple tool for the optimization of microwave pasteurization of milk. Mol. Nutr. Food Res. 2006, 50, 793–798. [Google Scholar] [CrossRef]
- Soliman, T.N.; Farrag, A.F.; Shendy, A.; El-Sayed, M.M. Denaturation and viscosity of whey proteins solutions as affected by frozen storage. J. Am. Sci. 2010, 6, 49–62. [Google Scholar]
- Friedman, M.; Cuq, J.L. Chemistry, analysis, nutritional value, and toxicology of tryptophan in food. A review. J. Agric. Food Chem. 1988, 36, 1079–1093. [Google Scholar] [CrossRef]
- Leclère, J.; Birlouez-Aragon, I.; Meli, M. Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chem. 2002, 76, 491–499. [Google Scholar] [CrossRef]
- Webb, B.; Hall, S. Some physical effects of freezing upon milk and Cream. J. Dairy Sci. 1935, 5, 275–286. [Google Scholar] [CrossRef]
- International Dairy Federation (IDF). Cheese and Processed Cheese Products. Determination of Dry Matter; FIL-IDF: Brussels, Belgium, 1986. [Google Scholar]
- Association of Official Analytical Chemists International (AOAC). Official Methods of Analysis, 17th ed.; AOAC Intl.: Gaithersburg, MD, USA, 2000. [Google Scholar]
- International Organization for Standardization (ISO 21543); International Dairy Federation (IDF 201). Milk Products—Guidelines for The Application Of Near Infrared Spectrometry; ISO: Geneva, Switzerland; IDF: Brussels, Belgium, 2006. [Google Scholar]
- Statistical Analysis System Institute (SAS). User’s Guide: Statistics; Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
Parameter | pH | Moisture % | Ashes % | Protein g/100 g | Fat g/100 g | Fat/Protein |
---|---|---|---|---|---|---|
Fresh curd | 4.97 b | 43.4 b | 1.83 a | 16.2 | 30.07 a | 1.88 |
Frozen curd | 5.13 a | 46.6 a | 1.47 b | 15.9 | 29.10 b | 1.86 |
p-values | <0.0001 | <0.005 | <0.0001 | n.s. | <0.05 | n.s. |
FC% | pH | Moisture % | Ashes % | Protein g/100 g | Fat g/100 g | Fat/Protein | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5.39 | 64.0 | a | 1.73 | 13.9 | b | 22.6 | a | 1.63 | a | ||
5 | 5.39 | 64.1 | a | 1.73 | 14.3 | ab | 22.4 | a | 1.56 | a | ||
20 | 5.38 | 63.2 | b | 1.78 | 14.5 | ab | 22.1 | a | 1.52 | ab | ||
50 | 5.42 | 63.8 | ab | 1.80 | 15.1 | a | 20.9 | b | 1.39 | b | ||
Storage | ||||||||||||
T1 | 5.34 | b | 60.8 | b | 1.65 | b | 15.4 | a | 23.7 | a | 1.54 | |
T9 | 5.44 | a | 66.8 | a | 1.87 | a | 13.5 | b | 20.4 | b | 1.52 | |
Significance | p-values | |||||||||||
FC% | n.s. | < 0.05 | n.s. | <0.0001 | <0.01 | <0.0001 | ||||||
Storage | <0.0001 | <0.0001 | <0.05 | <0.0001 | <0.0001 | n.s. | ||||||
Interaction FC% × Storage | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Parameter | Redox Potential mV | Antioxidant Activity mmol eq Trolox/100 g | MDA nmol/g | Carbonyls nmol/mg Protein | Trp-F a.u. | AMP-F a.u. | FAST Index |
---|---|---|---|---|---|---|---|
Fresh curd | 163 b | 10.3 a | 0.67 b | 1.54 b | 420 a | 37 | 8.0 b |
Frozen curd | 226 a | 9.4 b | 1.22 a | 2.13 a | 370 b | 40 | 10.7 a |
p-values | <0.0001 | <0.05 | <0.0001 | <0.01 | <0.001 | n.s. | <0.0001 |
FC% | Redox Potential mV | Antioxidant Activity mmol eq Trolox/100 g | MDA nmol/g | Carbonyls nmol/mg Protein | Trp-F a.u. | AMP-F a.u. | FAST Index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 186 | b | 10.08 | A | 0.36 | c | 2.10 | bc | 385 | a | 56.3 | 14.7 | b | |
5 | 192 | ab | 9.50 | Ab | 0.49 | b | 2.29 | b | 372 | ab | 57.8 | 15.6 | ab | |
20 | 199 | a | 9.21 | Ab | 0.58 | b | 2.82 | a | 345 | bc | 59.3 | 17.2 | ab | |
50 | 210 | a | 8.81 | B | 0.85 | a | 3.12 | a | 334 | c | 60.5 | 18.2 | a | |
Storage | ||||||||||||||
T1 | 179 | b | 9.53 | 0.55 | 2.00 | a | 385 | a | 62.5 | a | 16.3 | |||
T9 | 215 | a | 9.26 | 0.59 | 3.16 | b | 334 | b | 54.5 | b | 16.5 | |||
Significance | p-values | |||||||||||||
FC% | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | n.s. | <0.001 | |||||||
Storage | <0.0001 | n.s. | n.s. | <0.0001 | <0.0001 | <0.0001 | n.s. | |||||||
Interaction FC% × Storage | <0.05 | n.s. | n.s. | <0.01 | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Iacurto, M.; Tripaldi, C. Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd. Molecules 2021, 26, 1405. https://doi.org/10.3390/molecules26051405
Rinaldi S, Palocci G, Di Giovanni S, Iacurto M, Tripaldi C. Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd. Molecules. 2021; 26(5):1405. https://doi.org/10.3390/molecules26051405
Chicago/Turabian StyleRinaldi, Simona, Giuliano Palocci, Sabrina Di Giovanni, Miriam Iacurto, and Carmela Tripaldi. 2021. "Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd" Molecules 26, no. 5: 1405. https://doi.org/10.3390/molecules26051405
APA StyleRinaldi, S., Palocci, G., Di Giovanni, S., Iacurto, M., & Tripaldi, C. (2021). Chemical Characteristics and Oxidative Stability of Buffalo Mozzarella Cheese Produced with Fresh and Frozen Curd. Molecules, 26(5), 1405. https://doi.org/10.3390/molecules26051405