Thermochemistry of Solution, Solvation, and Hydrogen Bonding of Cyclic Amides in Proton Acceptor and Donor Solvents. Amide Cycle Size Effect
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Solution Calorimetry
3. Result and Discussion
3.1. Proton Donor Properties of Cyclic Amides
3.2. Proton Acceptors Properties of Cyclic Amides.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Matthew, S.; Ross, C.; Rocca, J.R.; Paul, V.J.; Luesch, H. Lyngbyastatin 4, a Dolastatin 13 Analogue with Elastase and Chymotrypsin Inhibitory Activity from the Marine CyanobacteriumLyngbya confervoides. J. Nat. Prod. 2007, 70, 124–127. [Google Scholar] [CrossRef]
- Mamillapalli, V.; Shaik, A.R.; Avula, P.R. Antiasthmatic activity of 2-piperidone by selective animal models. J. Res. Pharm. 2020, 24, 334–340. [Google Scholar]
- Mamillapalli, V.; Shaik, A.R.; Avula, P.R. Hepatoprotective activity of 2-piperidone isolated from leaf extracts of Talinum portulacifolium (Forssk.) Asch. Ex Schweinf in carbon tetrachloride induced hepatotoxicity. J. Pharm. Pharmacol. Res. 2019, 7, 234–245. [Google Scholar]
- Qiao, L.; Zhao, L.-Y.; Rong, S.-B.; Wu, X.-W.; Wang, S.; Fujii, T.; Kazanietz, M.G.; Rauser, L.; Savage, J.; Roth, B.L.; et al. Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. Bioorganic Med. Chem. Lett. 2001, 11, 955–959. [Google Scholar] [CrossRef]
- Wang, H.; Xie, K.; Wang, L.; Han, Y. N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries. J. Power Sources 2012, 219, 263–271. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Han, J.; He, D.; Yang, D.; Xue, Z.; Liao, Y.; Xie, X. Amide group-containing polar solvents as ligands for iron-catalyzed atom transfer radical polymerization of methyl methacrylate. RSC Adv. 2015, 5, 43724–43732. [Google Scholar] [CrossRef]
- Adler, M.; Laughlin, B.; Lieb, S.G. Effects of lactam ring size on the thermodynamics of hydrogen bonding in CCl4 solutions: Experimental and ab initio studies. Phys. Chem. Chem. Phys. 1999, 1, 5333–5338. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Yoon, C.J.; Choi, Y.S. The self-association of ε-caprolactam in carbon tetrachloride: A near-infrared spectroscopic study. Bull. Korean Chem. Soc. 1996, 17, 393–395. [Google Scholar]
- Tang, H.; Sun, S.; Wu, P. Thermally Induced Dissociation Nature of Pure 2-Pyrrolidinone via Near-Infrared Correlation Spectroscopy Analysis. Appl. Spectrosc. 2009, 63, 1174–1180. [Google Scholar] [CrossRef]
- Kimura, F.; Sugiura, T.; Ogawa, H. Solvation of N-methyl-2-pyrrolidone and N,N-dimethylpropanamide in cyclohexane, heptane, n-alkan-1-ols(C1–C4) and water at 298.15K. Thermochim. Acta 2013, 573, 206–212. [Google Scholar] [CrossRef]
- Morgan, K.M.; Kopp, D.A. Solvent effects on the stability of simple secondary amides †. J. Chem. Soc. Perkin Trans. 2 1998, 2, 2759–2764. [Google Scholar] [CrossRef]
- Hopmann, R.F.W. Chemical Relaxation as a Mechanistic Probe of Hydrogen Bonding. Thermodynamics and Kinetics of Lactam Isoassociation in Nonpolar Solvents. J. Phys. Chem. 1974, 78, 2341–2348. [Google Scholar] [CrossRef]
- González, J.A.; Cobos, J.C.; de la Fuente, I.G. Thermodynamics of liquid mixtures containing a very strongly polar compound: Part 6. DISQUAC characterization of N,N-dialkylamides. Fluid Phase Equilib. 2004, 224, 169–183. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Rakipov, I.T.; Solomonov, B.N.; Marczak, W. Speed of Sound, Density, and Related Thermodynamic Excess Properties of Binary Mixtures of 2-Pyrrolidone and N-Methyl-2-pyrrolidone with Acetonitrile and Chloroform. J. Chem. Eng. Data 2016, 61, 1032–1046. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Rakipov, I.T.; Solomonov, B.N. Calorimetric Investigation of Hydrogen Bonding of Formamide and Its Methyl Derivatives in Organic Solvents and Water. Int. J. Thermophys. 2013, 34, 710–724. [Google Scholar] [CrossRef]
- Rakipov, I.T.; Sabirzyanov, A.N.; Petrov, A.A.; Akhmadiayrov, A.A.; Varfolomeev, M.A.; Solomonov, B.N. Thermochemistry of hydrogen bonding of linear and cyclic amides in proton acceptors media. Thermochim. Acta 2017, 652, 34–38. [Google Scholar] [CrossRef]
- Rakipov, I.T.; Petrov, A.A.; Akhmadiyarov, A.A.; Khachatrian, A.A.; Varfolomeev, M.A.; Solomonov, B.N. Thermochemistry of hydrogen bonding of proton acceptors in the media of linear and cyclic amides. Cooperativity effects in multi-particle complexes of amides. Thermochim. Acta 2017, 657, 20–25. [Google Scholar] [CrossRef]
- Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R. Purification of Laboratory Chemicals; Butterworth/Heinemann: London/Oxford, UK, 1980. [Google Scholar]
- Rakipov, I.T.; Petrov, A.A.; Akhmadeev, B.S.; Varfolomeev, M.A.; Solomonov, B.N. Thermodynamic of dissolution and hydrogen bond of the pyrrole, N-methylpyrrole with proton acceptors. Thermochim. Acta 2016, 640, 19–25. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Rakipov, I.T.; Solomonov, B.N.; Lodowski, P.; Marczak, W. Positive and Negative Contributions in the Solvation Enthalpy due to Specific Interactions in Binary Mixtures of C1–C4 n-Alkanols and Chloroform with Butan-2-one. J. Phys. Chem. B 2015, 119, 8125–8134. [Google Scholar] [CrossRef] [PubMed]
- Varfolomeev, M.A.; Rakipov, I.T.; Khachatrian, A.A.; Acree, W.E.; Brumfield, M., Jr.; Abraham, M.H. Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations. Thermochim. Acta 2015, 617, 8–20. [Google Scholar] [CrossRef]
- Rakipov, I.T.; Varfolomeev, M.A.; Kirgizov, A.Y.; Solomonov, B.N. Thermodynamics of the hydrogen bonding of nitrogen-containing cyclic and aromatic compounds with proton donors: The structure-property relationship. Russ. J. Phys. Chem. A 2014, 88, 2023–2028. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Novikov, V.B.; Varfolomeev, M.A.; Mileshko, N.M. A new method for the extraction of specific interaction enthalpy from the enthalpy of solvation. J. Phys. Org. Chem. 2004, 18, 49–61. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Novikov, V.B. Solution calorimetry of organic nonelectrolytes as a tool for investigation of intermolecular interactions. J. Phys. Org. Chem. 2008, 21, 2–13. [Google Scholar] [CrossRef]
- Kleeberg, H.; Luck, W.A.P. Comparison of calorimetric and IR-spectroscopic data for alcohols and alcoholic solutions. J. Solut. Chem. 1982, 11, 611–624. [Google Scholar] [CrossRef]
- Catalan, J.; Gomez, J.; Couto, A.; Laynez, J. Toward a solvent basicity scale: The calorimetry of the pyrrole probe. J. Am. Chem. Soc. 1990, 112, 1678–1681. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Novikov, V.B.; Varfolomeev, M.A.; Klimovitskii, A.E. Calorimetric determination of hydrogen-bonding enthalpy for neat aliphatic alcohols. J. Phys. Org. Chem. 2005, 18, 1132–1137. [Google Scholar] [CrossRef]
- Zaitseva, K.V.; Varfolomeev, M.A.; Novikov, V.B.; Solomonov, B.N. Enthalpy of cooperative hydrogen bonding in complexes of tertiary amines with aliphatic alcohols: Calorimetric study. J. Chem. Thermodyn. 2011, 43, 1083–1090. [Google Scholar] [CrossRef]
- Rakipov, I.T.; Varfolomeev, M.A.; Kirgizov, A.Y.; Solomonov, B.N. Thermochemistry of dissolution, solvation, and hydrogen bonding of anilines in proton-acceptor organic solvents at 298.15 K. Russ. J. Gen. Chem. 2014, 84, 1676–1682. [Google Scholar] [CrossRef]
- Khachatrian, A.A.; Rakipov, I.T.; Mukhametzyanov, T.A.; Solomonov, B.N.; Miroshnichenko, E.A. The ability of ionic liquids to form hydrogen bonds with organic solutes evaluated by different experimental techniques. Part II. Alkyl substituted pyrrolidinium- and imidazolium-based ionic liquids. J. Mol. Liq. 2020, 309, 113138. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Novikov, V.B. A Simple Method for Determining the Enthalpy of Specific Solute-Solvent Interaction. Russ. J. Gen. Chem. 2004, 74, 694–700. [Google Scholar] [CrossRef]
- Khachatrian, A.A.; Shamsutdinova, Z.I.; Rakipov, I.T.; Varfolomeev, M.A. The ability of ionic liquids to form hydrogen bonds with organic solutes evaluated by different experimental techniques. Part I. Alkyl substituted imidazolium and sulfonium based ionic liquids. J. Mol. Liq. 2018, 265, 238–242. [Google Scholar] [CrossRef]
Solvent (S) | Bu | NMBu | Va | NMVa | Ca | NMCa |
---|---|---|---|---|---|---|
Acetone | 3.70 ± 0.17 b | −1.19 ± 0.05 b | 13.91 ± 0.13 | 1.5 ± 0.03 | 20.01 ± 0.18 | 1.01 ± 0.02 |
Acetonitrile | 5.43 ± 0.01 b | −1.68 ± 0.01 b | 14.04 ± 0.41 | 0.85 ± 0.05 | 20.37 ± 0.05 | 0.44 ± 0.02 |
Ethyl acetate | 5.92 ± 0.07 b | −0.97 ± 0.03 b | 14.81 ± 0.19 | 2.31 ± 0.11 | 20.92 ± 0.09 | 1.60 ± 0.02 |
Tetrahydrofuran | 5.10 ± 0.05 b | 1.58 ± 0.01 b | 14.00 ± 0.09 | 1.58 ± 0.10 | 19.18 ± 0.14 | 1.37 ± 0.02 |
Pyridine | −0.29 ± 0.03 b | −2.18 ± 0.06 b | 8.02 ± 0.08 | −2.90 ± 0.04 | 13.86 ± 0.08 | −2.54 ± 0.02 |
Solvent (S) | Bu | NMBu | Va | NMVa | Ca | NMCa |
---|---|---|---|---|---|---|
Acetone | −70.0 ± 1.3 | −57.6 ± 0.6 | −64.8 ± 1.3 | −58.4 ± 0.4 | −67.9 ± 0.6 | −62.0 ± 0.2 |
Acetonitrile | −68.3 ± 1.3 | −58.1 ± 0.6 | −64.7 ± 1.4 | −59.1 ± 0.4 | −67.5 ± 0.6 | −62.6 ± 0.2 |
Ethyl acetate | −67.8 ± 1.3 | −57.4 ± 0.6 | −63.9 ± 1.3 | −57.6 ± 0.4 | −67.0 ± 0.6 | −61.4 ± 0.2 |
Tetrahydrofurane | −68.6 ± 1.3 | −54.8 ± 0.6 | −64.7 ± 1.3 | −58.3 ± 0.4 | −68.7 ± 0.6 | −61.6 ± 0.2 |
Pyridine | −74.0 ± 1.3 | −58.6 ± 0.6 | −70.7 ± 1.3 | −62.8 ± 0.4 | −74.0 ± 0.6 | −65.5 ± 0.2 |
73.7 ± 1.3 b | 56.4 ± 0.6 b | 78.7 ± 1.3 b | 59.9 ± 0.4 b | 87.9 ± 0.6 b | 63.0 ± 0.2 b |
Solvent (S) | γ-Butyrolactam | δ-Valerolactam | ε-Caprolactam | β |
---|---|---|---|---|
Acetone | −12.4 (−11.5) b | −6.4 | −5.9 | 0.48 |
Acetonitrile | −10.2 (−8.9) b | −5.6 | −5.0 | 0.31 |
Ethyl acetate | −10.4 (−10.4) b | −6.3 | −5.6 | 0.45 |
Tetrahydrofurane | −13.8 (−13.2) b | −6.4 | −7.1 | 0.55 |
Pyridine | −15.4 (−6.1) b | −7.9 | −8.5 | 0.64 |
Solvent (S) | N-methylbutyrolactam | N-methylvalerolactam | N-methylcaprolactam |
---|---|---|---|
Dichloromethane | −8.56 ± 0.05 | −8.33 ± 0.05 | −7.28 ± 0.04 |
Chloroform | −19.06 ± 0.09 | −19.29 ± 0.07 | −17.97 ± 0.05 |
Solvent (S) | N-methylbutyrolactam | N-methylvalerolactam | N-methylcaprolactam |
---|---|---|---|
Dichloromethane | −4.9 | −4.5 | −3.9 |
Chloroform | −17.7 | −17.8 | −16.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakipov, I.T.; Petrov, A.A.; Akhmadiyarov, A.A.; Khachatrian, A.A.; Mukhametzyanov, T.A.; Solomonov, B.N. Thermochemistry of Solution, Solvation, and Hydrogen Bonding of Cyclic Amides in Proton Acceptor and Donor Solvents. Amide Cycle Size Effect. Molecules 2021, 26, 1411. https://doi.org/10.3390/molecules26051411
Rakipov IT, Petrov AA, Akhmadiyarov AA, Khachatrian AA, Mukhametzyanov TA, Solomonov BN. Thermochemistry of Solution, Solvation, and Hydrogen Bonding of Cyclic Amides in Proton Acceptor and Donor Solvents. Amide Cycle Size Effect. Molecules. 2021; 26(5):1411. https://doi.org/10.3390/molecules26051411
Chicago/Turabian StyleRakipov, Ilnaz T., Artem A. Petrov, Aydar A. Akhmadiyarov, Artashes A. Khachatrian, Timur A. Mukhametzyanov, and Boris N. Solomonov. 2021. "Thermochemistry of Solution, Solvation, and Hydrogen Bonding of Cyclic Amides in Proton Acceptor and Donor Solvents. Amide Cycle Size Effect" Molecules 26, no. 5: 1411. https://doi.org/10.3390/molecules26051411
APA StyleRakipov, I. T., Petrov, A. A., Akhmadiyarov, A. A., Khachatrian, A. A., Mukhametzyanov, T. A., & Solomonov, B. N. (2021). Thermochemistry of Solution, Solvation, and Hydrogen Bonding of Cyclic Amides in Proton Acceptor and Donor Solvents. Amide Cycle Size Effect. Molecules, 26(5), 1411. https://doi.org/10.3390/molecules26051411