Exploring Charged Polymeric Cyclodextrins for Biomedical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterisation
2.2. Antiaggregant Activity
2.3. Solubility Experiments
2.4. Antiproliferative Activity (MTT Assay)
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of PGAβCyDArg1
3.1.2. Synthesis of PGAβCyDArg2
3.1.3. Synthesis of PGAγCyDArg3
3.1.4. Synthesis of PGAβCyDArg4 and PGAγCDArg5
PGAβCyDArg4
PGAγCyDArg5
3.2. Instrumentation
3.2.1. Dynamic Light Scattering and Zeta Potential Measurements
3.2.2. Mass Spectrometry
3.3. Cell Culture and Antiproliferative Assay
3.4. Aβ Aggregation Assay
3.5. Solubility Experiments
3.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A2780 | Human ovarian carcinoma |
A549 | Human Caucasian lung carcinoma |
Aβ | Amyloid beta |
AD | Alzheimer’s disease ArgOCH3, arginine methyl ester |
CyD | Cyclodextrin |
CTRL | control |
DHB | 2,5-di-hydroxybenzoic acid |
DLS | Dynamic light scattering |
DMEM | Dulbecco’s Modified Eagle’s Medium |
DMTMM | 4-(4,6-Dimethoxy-1,3,5-triazin 2-yl)-4-methylmorpholinium chloride |
DOX | Doxorubicin F |
FBS | Fetal Bovinum Serum |
IC50 | half maximal inhibitory concentration |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide |
MDA-MB-231 | Human Caucasian breast adenocarcinoma |
PGA | N-butyl-polyglutamate |
PGACyDArg | N-butyl-polyglutamate Cyclodextrin Arginine |
RPMI | Roswell Park Memorial Institute |
ThT | Thioflavin T |
References
- Oliveri, V.; Vecchio, G. Metallocyclodextrins in Medicinal Chemistry. Future Med. Chem. 2018, 10, 663–677. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Muankaew, C.; Loftsson, T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin. Pharmacol. Toxicol. 2018, 122, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Garrido, P.F.; Calvelo, M.; Blanco-González, A.; Veleiro, U.; Suárez, F.; Conde, D.; Cabezón, A.; Piñeiro, Á.; Garcia-Fandino, R. The Lord of the NanoRings: Cyclodextrins and the Battle against SARS-CoV-2. Int. J. Pharm. 2020, 588. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B. Cyclodextrin Complexes: Perspective from Drug Delivery and Formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Costa, D.; Ferreira, L.; Guerra, C.; Pereira-Silva, M.; Pereira, I.; Peixoto, D.; Ferreira, N.R.; Veiga, F. Cyclodextrin-Based Delivery Systems for in Vivo-Tested Anticancer Therapies. Drug Deliv. Transl. Res. 2021, 11, 49–71. [Google Scholar] [CrossRef]
- Zhang, D.; Lv, P.; Zhou, C.; Zhao, Y.; Liao, X.; Yang, B. Cyclodextrin-Based Delivery Systems for Cancer Treatment. Mater. Sci. Eng. C 2019, 96, 872–886. [Google Scholar] [CrossRef]
- Hoang Thi, T.T.; Du Cao, V.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized Mesoporous Silica Nanoparticles and Biomedical Applications. Mater. Sci. Eng. C 2019, 99, 631–656. [Google Scholar] [CrossRef]
- Xu, S.; Wang, P.; Sun, Z.; Liu, C.; Lu, D.; Qi, J.; Ma, J. Dual-Functionalization of Polymeric Membranes via Cyclodextrin-Based Host-Guest Assembly for Biofouling Control. J. Memb. Sci. 2019, 569, 124–136. [Google Scholar] [CrossRef]
- Kulkarni, A.; Caporali, P.; Dolas, A.; Johny, S.; Goyal, S.; Dragotto, J.; Macone, A.; Jayaraman, R.; Fiorenza, M.T. Linear Cyclodextrin Polymer Prodrugs as Novel Therapeutics for Niemann-Pick Type C1 Disorder. Sci. Rep. 2018, 8, 9547. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.; Lv, P.; Wang, Q.; Zheng, J.; Feng, B.; Yang, B. Cyclodextrin-Based Biological Stimuli-Responsive Carriers for Smart and Precision Medicine. Biomater. Sci. 2017, 5, 1736–1745. [Google Scholar] [CrossRef]
- van de Manakker, F.; Vermonden, T.; van Nostrum, C.F.; Hennink, W.E. Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications. Biomacromolecules 2009, 10, 3157–3175. [Google Scholar] [CrossRef]
- Heidel, J.D.; Schluep, T. Cyclodextrin-Containing Polymers: Versatile Platforms of Drug Delivery Materials. J. Drug Deliv. 2012, 2012, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serno, T.; Geidobler, R.; Winter, G. Protein Stabilization by Cyclodextrins in the Liquid and Dried State. Adv. Drug Deliv. Rev. 2011, 63, 1086–1106. [Google Scholar] [CrossRef]
- Otzen, D.E.; Knudsen, B.R.; Aachmann, F.; Larsen, K.L.; Wimmer, R. Structural Basis for Cyclodextrins’ Suppression of Human Growth Hormone Aggregation. Protein Sci. 2009, 11, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, V.; Vecchio, G. Cyclodextrins as Protective Agents of Protein Aggregation: An Overview. Chem. Asian J. 2016, 11, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, V.; Bellia, F.; Pietropaolo, A.; Vecchio, G. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-Induced Aβ Aggregation. Chem. Eur. J. 2015, 21, 14047–14059. [Google Scholar] [CrossRef]
- Wahlström, A.; Cukalevski, R.; Danielsson, J.; Jarvet, J.; Onagi, H.; Rebek, J.; Linse, S.; Gräslund, A. Specific Binding of a β-Cyclodextrin Dimer to the Amyloid β Peptide Modulates the Peptide Aggregation Process. Biochemistry 2012, 51, 4280–4289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chang, L.; Klein, W.L.; Thatcher, G.R.J.; Venton, D.L. Per-6-Substituted-per-6-Deoxy β-Cyclodextrins Inhibit the Formation of β-Amyloid Peptide Derived Soluble Oligomers. J. Med. Chem. 2004, 47, 3329–3333. [Google Scholar] [CrossRef]
- Giglio, V.; Bellia, F.; Oliveri, V.; Vecchio, G. Aminocyclodextrin Oligomers as Protective Agents of Protein Aggregation. Chempluschem 2016, 81, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Wang, X.; Liu, P.; Ke, C.; Xu, S. Arginine Metabolism and Deprivation in Cancer Therapy. Biomed. Pharmacother. 2019, 118, 109210. [Google Scholar] [CrossRef]
- Fuchs, S.M.; Rutkoski, T.J.; Kung, V.M.; Groeschl, R.T.; Raines, R.T. Increasing the Potency of a Cytotoxin with an Arginine Graft. Protein Eng. Des. Sel. 2007, 20, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Mizusako, H.; Tagami, T.; Hattori, K.; Ozeki, T. Active Drug Targeting of a Folate-Based Cyclodextrin-Doxorubicin Conjugate and the Cytotoxic Effect on Drug-Resistant Mammary Tumor Cells In Vitro. J Pharm Sci 2015, 104, 2934–2940. [Google Scholar] [CrossRef]
- Viale, M.; Vecchio, G.; Monticone, M.; Bertone, V.; Giglio, V.; Maric, I.; Cilli, M.; Bocchini, V.; Profumo, A.; Ponzoni, M.; et al. Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity. Pharm. Res. 2019, 36, 1–12. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Liu, J. Cyclodextrin-Based Delivery Systems for Chemotherapeutic Anticancer Drugs: A Review. Carbohydr. Polym. 2020, 232, 115805. [Google Scholar] [CrossRef]
- Oliveri, V.; Bellia, F.; Viale, M.; Maric, I.; Vecchio, G. Linear Polymers of β and γ Cyclodextrins with a Polyglutamic Acid Backbone as Carriers for Doxorubicin. Carbohydr. Polym. 2017, 177, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Giachino, C.; Viale, M.; Vecchio, G. Exploring the Functionalization of Polymeric Nanoparticles Based on Cyclodextrins for Tumor Cell Targeting. ChemistrySelect 2019, 4, 13025–13028. [Google Scholar] [CrossRef]
- Haass, C.; Selkoe, D.J. Soluble Protein Oligomers in Neurodegeneration: Lessons from the Alzheimer’s Amyloid β-Peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. [Google Scholar] [CrossRef]
- Greco, V.; Naletova, I.; Ahmed, I.M.M.; Vaccaro, S.; Messina, L.; La Mendola, D.; Bellia, F.; Sciuto, S.; Satriano, C.; Rizzarelli, E. Hyaluronan-Carnosine Conjugates Inhibit Aβ Aggregation and Toxicity. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Malanga, M.; Manet, I.; Manoli, F.; Tuza, K.; Aykaç, A.; Ladavière, C.; Fenyvesi, E.; Vargas-Berenguel, A.; Gref, R.; et al. Citric Acid-γ-Cyclodextrin Crosslinked Oligomers as Carriers for Doxorubicin Delivery. Photochem. Photobiol. Sci. 2013, 12, 1841–1854. [Google Scholar] [CrossRef] [PubMed]
- Giglio, V.; Viale, M.; Bertone, V.; Maric, I.; Vaccarone, R.; Vecchio, G. Cyclodextrin Polymers as Nanocarriers for Sorafenib. Investig. New Drugs 2018, 36, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.I.; Bellia, F.; Arena, G.; Satriano, C.; Vecchio, G.; Rizzarelli, E. Multitarget Trehalose-Carnosine Conjugates Inhibit Aβ Aggregation, Tune Copper(II) Activity and Decrease Acrolein Toxicity. Eur. J. Med. Chem. 2017, 135, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Viale, M.; Cordazzo, C.; de Totero, D.; Budriesi, R.; Rosano, C.; Leoni, A.; Ioan, P.; Aiello, C.; Croce, M.; Andreani, A.; et al. Inhibition of MDR1 Activity and Induction of Apoptosis by Analogues of Nifedipine and Diltiazem: An in Vitro Analysis. Investig. New Drugs 2011, 29, 98–109. [Google Scholar] [CrossRef] [PubMed]
Polymer | CyD Units | Arg Units | Z Potential (mV) | Mw (Da) |
---|---|---|---|---|
PGAβCyDArg1 | 19 ± 1 | 4 ± 1 | 8 ± 1 | 25,500 |
PGAβCyDArg2 | 15 ± 1 | 7 ± 1 | 7.7 ± 0.5 | 21,700 |
PGAγCyDArg3 | 12 ± 1 | 10 ± 1 | 2.3 ± 0.5 | 21,100 |
PGAβCyDArg4 | 6 ± 1 | 15 ± 1 | 45 ± 5 | 13,600 |
PGAγCyDArg5 | 5 ± 1 | 15 ± 1 | 37 ± 3 | 13,300 |
Cell Line | PGAβCyDArg1 | PGAβCyDArg2 | PGAγCyDArg3 | PGAβCyDArg4 | PGAγCyDArg5 | DOX |
---|---|---|---|---|---|---|
A2780 a | 4.7 ± 1.7 b | 5.9 ± 1.6 | 12.7 ± 2.4 c | 10.0 ± 1.7 d | 11.7 ± 0.4 e | 7.7 ± 3.9 |
A549 | 55.2 ± 10.0 | 52.2 ± 10.1 | 70.0 ± 16.6 | 52.6 ± 4.4 | 56.2 ± 2.9 | 54.6 ± 19.2 |
MDA-MB-231 | 37.7 ± 11.8 | 40.9 ± 6.5 | 50.6 ± 22.5 | 60.2 ± 15.2 | 65.3 ± 16.7 | 40.9 ± 13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bognanni, N.; Bellia, F.; Viale, M.; Bertola, N.; Vecchio, G. Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules 2021, 26, 1724. https://doi.org/10.3390/molecules26061724
Bognanni N, Bellia F, Viale M, Bertola N, Vecchio G. Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules. 2021; 26(6):1724. https://doi.org/10.3390/molecules26061724
Chicago/Turabian StyleBognanni, Noemi, Francesco Bellia, Maurizio Viale, Nadia Bertola, and Graziella Vecchio. 2021. "Exploring Charged Polymeric Cyclodextrins for Biomedical Applications" Molecules 26, no. 6: 1724. https://doi.org/10.3390/molecules26061724
APA StyleBognanni, N., Bellia, F., Viale, M., Bertola, N., & Vecchio, G. (2021). Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules, 26(6), 1724. https://doi.org/10.3390/molecules26061724