Towards Enhanced MRI Performance of Tumor-Specific Dimeric Phenylboronic Contrast Agents

Jonathan Martinelli^{1,2}, Lorenzo Tei², Simonetta Geninatti Crich³, Diego Alberti³, and Kristina Djanashvili^{1,*}

- ¹ Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- ² Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
- ³ Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy

Fitting of ¹H NMRD profiles and ¹⁷O NMR relaxivity data

From the two contributions (inner sphere ($r_{1,IS}$) and outer-sphere ($r_{1,OS}$)) to the longitudinal proton relaxation rate (r_1) (eq. 1), the former one is considered for the fitting of ¹H NMRD profiles [26]. The effect of outer-sphere water molecules in Gd^{III}-DOTA-EN-PBA analogues can be neglected.

$$r_1 = r_{1,IS} + r_{1,OS} \tag{1}$$

According to the Solomon–Bloembergen theory, the $r_{1,15}$ is dominated by the dipolar interaction (eqs. 2 and 3), where q is the number of water molecules directly coordinated to the Gd-ion, T_{1M} is their longitudinal relaxation time, τ_M is the water-exchange correlation time [22-25].

$$r_{1,IS} = \frac{q}{55556(T_{1M} + \tau_M)} \tag{2}$$

$$\frac{1}{T_{1M}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 y_S^2 y_I^2}{r_{GdH}^6} S(S+1) \left(\frac{3\tau_{d1}}{1+\omega_I^2 \tau_{d2}^2}\right)$$
(3)

Here, r_{GdH} is the distance between the proton of a bound H₂O molecule and Gd-ion (fixed at 3.0 Å), $\mu_0/4\pi$ is the magnetic permeability in vacuum, *S* is the electron spin (7/2), γ_1 and γ_5 are the gyromagnetic ratios, and ω_1 and ω_5 are the Larmor frequencies of the proton and electron, respectively. T_{ie} (*i* = 1,2) represents electronic relaxation time that contributes to $\tau_{\text{di}^-1} = \tau_{\text{M}^-1} + \tau_{\text{R}^-1} + T_{\text{ie}^{-1}}$, expressed by eqs. 4 and 5 due to zero-field splitting (ZFS) [38].

$$\frac{1}{T_{1e}} = \frac{1}{25} \Delta^2 \tau_V [4S(S+1) - 3] \left(\frac{1}{1 + \omega_S^2 \tau_V^2} + \frac{1}{1 + 4\omega_S^2 \tau_V^2} \right)$$
(4)

$$\frac{1}{T_{2e}} = \Delta^2 \tau_V \left(\frac{5.26}{1 + 0.372 \omega_S^2 \tau_V^2} + \frac{7.18}{1 + 1.24 \omega_S^2 \tau_V^2} \right)$$
(5)

Here, Δ^2 represents the mean-squared fluctuation of the ZFS, τ_v is the correlation time for the instantaneous distortion of the coordination polyhedron of Gd-ion. The outersphere contribution to the relaxivity ($r_{1,OS}$) is described by eqs. 6 and 7, where N_A is the Avogadro's number, a_{GdH} the distance of diffusing water molecule in the closest approach to Gd-ion (fixed at 4.0 Å), D_{GdH} is diffusion coefficient and $J_{OS}(\omega_S, Tje)$ (j = 1, 2) are spin density functions [25].

$$r_{1,IS} = \left(\frac{32\pi}{405}\right) \left(\frac{\mu_0}{4\pi}\right)^2 y_I^2 y_S^2 \hbar^2 S(S+1) \frac{N_A}{a_{GdH} D_{GdH}} [3J_{OS}(\omega_I, T_{1e}) + 7J_{OS}(\omega_S, T_{1e})]$$
(6)

$$J_{OS}(\omega_{I}, T_{je}) = Re \left\{ \frac{1 + \frac{1}{4} \left[i\omega\tau_{GdH} + \left(\frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}} \right]}{1 + \left[i\omega\tau_{GdH} + \left(\frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{4}} \right] + \frac{4}{9} \left[i\omega\tau_{GdH} + \left(\frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}} \right] + \frac{1}{9} \left[i\omega\tau_{GdH} + \left(\frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}} \right]} \right\}$$
(7)

All correlation times τ (X = R, M, V) exhibit an exponential dependence (eq. 8), where E_x are activation energies (fixed at $E_V = 1$ kJ mol⁻¹, $E_R = 1$ kJ mol⁻¹) and R is the gas constant, leading to a temperature dependent diffusion coefficient D (fixed at 2.24×10⁻⁵ cm² s⁻¹ for 298.15K).

$$\tau_X^T = \tau_X^{298} exp\left[\frac{E_X}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$
(8)

$$D_{GdH}^{T} = D_{GdH}^{298} exp\left[\frac{E_{D}}{R}\left(\frac{1}{298.15} - \frac{1}{T}\right)\right]$$
(9)

Gd-induced water ¹⁷O longitudinal and transverse relaxation rates $(1/T1r \text{ and } 1/T_{2r})$ and angular frequencies ($\Delta \omega r$) were calculated using eqs. 10 and 11 [38-40].

$$\frac{1}{T_{1r}} = \frac{1}{T_{1M} + \tau_M} \tag{10}$$

$$\frac{1}{T_{2r}} = \frac{1}{\tau_M} \frac{1}{T_{1M} + \tau_M} \tag{11}$$

Figure S1. ¹H NMR spectrum in D₂O of (DOTA-EN)₂-PBA ligand.

Figure S2. ¹H NMR spectrum in D₂O of (DOTA-EN)₂-F₂PBA ligand prepared *via* solid-phase synthesis. (residual Et₂O from precipitation is also observable).

Figure S3. ¹⁹F NMR spectrum in D₂O of (DOTA-EN)₂-F₂PBA ligand.

Figure S4. ESI⁺ mass spectra of (Gd^{III}-DOTA-EN)₂-PBA (*left*) and with its mono- and di-sodium adducts (*right*).

Figure S5. ESI⁺ mass spectrum of (Gd^{III}-DOTA-EN)₂-F₂PBA.

Transmetallation study

Paramagnetic relaxation rate ($R_1=1/T_1$) of Gd^{III}-DOTA-EN-PBA (2.5 mM) was measured at 37° C in a phosphate buffer (pH=7) composed of KH₂PO₄ (0.025 M) and Na₂HPO₄ (0.04 M) in the presence of 2.5 mM of ZnCl₂ [9]. The reported R_1 values are corrected for diamagnetic contribution of the water relaxation. The measurements were performed at 400 MHz at 37° C in a Bruker Avance-400 NMR spectrometer in 5 mm sample tubes.

Figure S6. Evolution of the longitudinal relaxivity of Gd^{III}-DOTA-EN-PBA as a function of time time in the presence of competing Zn^{II} -ions in phosphate buffer. High ratio $R_1(t)/R_1(0)$ (close to 1) indicates transmetallation high stability.