Chemical Adsorption Strategy for DMC-MeOH Mixture Separation †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Materials
3.3. General Procedure for the Absorption Reaction
3.4. General Procedure for the Separation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shaikh, A.A.G.; Sivaram, S. Organic carbonates. Chem. Rev. 1996, 96, 951–976. [Google Scholar] [CrossRef]
- Ono, Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal. A: Gen. 1997, 155, 133–166. [Google Scholar] [CrossRef]
- Huang, S.; Yan, B.; Wang, S.; Ma, X. Recent advances in dialkyl carbonates synthesis and applications. Chem. Soc. Rev. 2015, 44, 3079–3116. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Sun, J.; Sun, W.-G.; Cheng, Shi, C.-Y.; Dong, K.; Zhang, X.-P.; Zhang, S.-J. Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal. Sci. Technol. 2012, 2, 600–605. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; Dou, X.-Y.; Wu, F.; He, L.-N. NaZSM-5-catalyzed dimethyl carbonate synthesis via the transesterification of ethylene carbonate with methanol. Can. J. Chem. 2011, 89, 544–548. [Google Scholar] [CrossRef]
- Kim, D.-W.; Lim, D.-O.; Cho, D.-H.; Koh, J.-C.; Park, D.-W. Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41. Catal. Today 2011, 164, 556–560. [Google Scholar] [CrossRef]
- Juárez, R.; Corma, A.; García, H. Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate. Green Chem. 2009, 11, 953–958. [Google Scholar] [CrossRef]
- Honda, M.; Tamura, M.; Nakagawa, Y.; Sonehara, S.; Suzuki, K.; Fujimoto, K.-I.; Tomishige, K. Ceria-Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2-Cyanopyridine. Chem. Sus. Chem 2013, 6, 1341–1344. [Google Scholar] [CrossRef]
- Zhao, T.; Hu, X.; Wu, D.; Li, R.; Yang, G.; Wu, Y. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant. Chem. Sus. Chem 2017, 10, 2046–2052. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhang, L.; Yin, S.; Yang, G.; Han, B. Driving dimethyl carbonate synthesis from CO2 and methanol and production of acetylene simultaneously using CaC2. Chem. Commun. 2018, 54, 4410–4412. [Google Scholar] [CrossRef] [PubMed]
- Xuan, K.; Pu, Y.; Li, F.; Li, A.; Luo, J.; Li, L.; Wang, F.; Zhao, N.; Xiao, F. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. J. CO2 Util. 2018, 27, 272–282. [Google Scholar] [CrossRef]
- Liao, Y.; Li, F.; Dai, X.; Zhao, N.; Xiao, F. Dimethyl carbonate synthesis over solid base catalysts derived from Ca–Al layered double hydroxides. Chem. Pap. 2018, 72, 1963–1971. [Google Scholar] [CrossRef]
- Yang, B.; Wang, D.; Lin, H.; Sun, J.; Wang, X. Synthesis of dimethyl carbonate from urea and methanol catalyzed by the metallic compounds at atmospheric pressure. Catal. Commun. 2006, 7, 472–477. [Google Scholar] [CrossRef]
- Kumar, R.; Bhakta, P.; Chakraborty, S.; Pal, P. Separating Cyanide from Coke Wastewater by Cross Flow Nanofiltration. Sep. Sci. Technol. 2011, 46, 2119–2127. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, W.; Li, Q.; Rong, Q.; Zu, H.; Sang, M. Separation of dimethyl carbonate/methanol azeotropic mixture by pervaporation with dealcoholized room temperature-vulcanized silicone rubber/nanosilica hybrid active layer. Sep. Purif. Technol. 2020, 248, 116926. [Google Scholar] [CrossRef]
- Hu, C.-C.; Cheng, S.-H. Development of alternative methanol/dimethyl carbonate separation systems by extractive distilla-tion—A holistic approach. Chem. Eng. Res. Des. 2017, 127, 189–214. [Google Scholar] [CrossRef]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.; Eckert, C.A.; Liotta, C.L. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 2005, 436, 1102–1103. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 2018, 1, 487–493. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 2011, 4, 3971–3975. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem. 2010, 12, 743–754. [Google Scholar] [CrossRef]
- Caubere, P. Unimetal super bases. Chem. Rev. 1993, 93, 2317–2334. [Google Scholar] [CrossRef]
- Tian, J.-S.; Miao, C.-X.; Wang, J.-Q.; Cai, F.; Du, Y.; Zhao, Y.; He, L.-N. Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem. 2006, 9, 566–571. [Google Scholar] [CrossRef]
Entry | Solvent | Pressure/MPa | Temp./°C | CO2 Absorption Loading/mmol | |||
---|---|---|---|---|---|---|---|
20 min | 1 h | 100 min | 16 h | ||||
1 | hexane | 0.1 | 12 | - | 1.05 | - | 6.01 |
2 | toluene | 0.1 | 12 | - | 1.65 | - | 7.56 |
3 | DMC | 0.1 | 12 | - | 1.34 | - | 8.78 |
4 | DMF | 0.1 | 12 | - | 1.92 | - | 9.02 |
5 | DMC | 0.1 | 25 | - | 0.56 | 1.60 | - |
6 | - | 0.1 | 25 | - | 9.50 | 9.60 | - |
7 | - | 0.1 | 35 | - | 0 | 0.25 | - |
8 | DMF | 0.1 | 25 | - | 1.89 | 2.70 | 9.41 |
9 | DMF | 1.0 | 25 | 9.42 | - | - | - |
10 | DMF | 2.0 | 25 | 9.45 | - | - | - |
11 | DMF | 3.4 | 25 | 9.47 | - | - | - |
12 | toluene | 1.0 | 25 | 8.63 | - | - | - |
13 | toluene | 1.8 | 25 | 8.72 | - | - | - |
14 | DMC | 1.0 | 25 | 8.21b | - | - | 8.22 |
Entry | DMC/wt% | Alcohol Candidate | CO2 Absorption/mmol | Separation Efficiency of MeOH/% | |
---|---|---|---|---|---|
Alcohol Type | Loading (mmol) or Mole Ratio | ||||
1 | 22.9 | EtOH | 10 | 9.52 | 95.2 |
2 | 30.6 | EG | 5 | 8.92 | 89.2 |
3 | 26.5 | PG | 5 | 8.45 | 84.5 |
4 | 30.9 | Glycerol | 3.33 | 7.28 | 72.8 |
5 | 30.3 | MeOH and EG | 2:1 | 9.64 | 96.4 |
6 | 28.1 | MeOH and PG | 2:1 | 9.78 | 97.8 |
7 | 10 | MeOH and PG | 2:1 | 9.76 | 97.6 |
8 | 80 | MeOH and PG | 2:1 | 9.15 | 91.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Liu, P.; Zhang, K.; Song, Q.-W. Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules 2021, 26, 1735. https://doi.org/10.3390/molecules26061735
Zhang F, Liu P, Zhang K, Song Q-W. Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules. 2021; 26(6):1735. https://doi.org/10.3390/molecules26061735
Chicago/Turabian StyleZhang, Fucan, Ping Liu, Kan Zhang, and Qing-Wen Song. 2021. "Chemical Adsorption Strategy for DMC-MeOH Mixture Separation" Molecules 26, no. 6: 1735. https://doi.org/10.3390/molecules26061735
APA StyleZhang, F., Liu, P., Zhang, K., & Song, Q. -W. (2021). Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules, 26(6), 1735. https://doi.org/10.3390/molecules26061735