Solvent-controlled self-assembled oligopyrrolic receptor

Fei Wang¹, Kejiang Liang¹, Mads Christian Larsen², Steffen Bähring^{2,*}, Masatoshi Ishida^{3,*}, Hiroyuki Furuta^{3,*} and Atanu Jana^{4,*}

¹Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, No 333 Nanchen Road, Baoshan District, Shanghai, 200444, P. R. China.

²Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark; E-mail: sbahring@sdu.dk (SB)

³Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan; E-mails: ishida.masatoshi.686@m.kyushu-u.ac.jp (MI); hfuruta@cstf.kyushu-u.ac.jp (HF)

⁴Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru – 561203, Karnataka, India. E-mail: atanu.j78@gmail.com, ajana2@gitam.edu (AJ)

Table of Contents

I. NMR & Mass Spectral Analyses	S2-S15
II. Additional Photophysical Data from UV-vis Spectroscopic Analyses	
III. Single Crystal X-ray Crystallography	S15-S22
IV. Additional Data from DFT Calculations	S22
V. References & Notes	
VI. Cartesian Coordinates	S23-S35

I. NMR & Mass Spectral Analyses

Figure S1. ¹H NMR spectrum of 2 recorded in CDCl₃ at 298 K.

Figure S2. ¹H NMR spectrum of **3** recorded in CDCl₃ at 298 K.

Figure S3. ¹H NMR spectrum of 5 recorded in CDCl₃ at 298 K.

Figure S4. ¹H NMR spectrum of **6** recorded in DMSO- d_6 at 298 K.

Figure S5. ¹H NMR spectrum of **7** recorded in CDCl₃ at 298 K.

Figure S6. ¹H NMR spectrum of 8 recorded in CDCl₃ at 298 K.

Figure S8. ¹³C NMR spectrum of 9 recorded in CDCl₃ at 298 K.

Figure S9. ¹H NMR spectrum of receptor 10 recorded in CDCl₃ at 298 K.

Figure S10. ¹H NMR spectra of 10 (bottom) and 10 in presence of D₂O (top) recorded in CDCl₃ at 298 K.

Figure S11. ¹³C NMR spectrum of receptor 10 recorded in CDCl₃ at 298 K.

Figure S12. MALDI-TOF mass spectrum of receptor 10.

Figure S13. ESI-TOF MS of the receptor 10, showing 'm/z' corresponding to the hydrogen-bonded dimeric macrocyclic species $(10)_2$. Inset: Isotopic distribution pattern of the dimeric macrocyclic receptor $(10)_2$ predicted by ESI-TOF MS, considering $(M+1)^+$.

Figure S14. Variable temperature ¹H NMR (400 MHz in CDCl₃) spectra of (10)₂.

Figure S15. Variable temperature ¹H NMR (400 MHz in THF- d_8) spectra of (10)_n.

Figure S16. Variable temperature ¹H NMR (400 MHz in DMF- d_7) spectra of (10)_n.

Figure S17. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectroscopic titration results of (10)_n against 100 equiv of acetic acid (a), and 100 equiv of propionic acid (b).

Figure S18. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectroscopic titration results of **10** against 100 equiv of TFA (a), and 100 equiv of H₂SO₄ (b).

Figure S19. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectroscopic titration results of 10 against 100 equiv of HCl (a), and 100 equiv of HNO₃ (b).

Figure S20. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectroscopic titration results of **10** against 100 equiv of MSA (a), and 100 equiv of PTSA (b).

Figure S21. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectra of **10** (a), with H₂SO₄ (b), and the organic phase after aqueous extraction (c). The spectrum (c) reveals that the supramolecular receptor releases H₂SO₄ upon aqueous wash.

Figure S22. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectra of **10** (a), with MSA (b), and the organic phase after aqueous extraction (c). The spectrum (c) reveals that the supramolecular receptor releases MSA upon aqueous wash.

Figure S23. ¹H NMR (600 MHz, THF- d_8 at 298 K) spectra of **10** (a), with HCl (b), and the organic phase after aqueous extraction (c). The spectrum (c) reveals that the supramolecular receptor releases HCl upon aqueous wash.

Figure S24. ¹H NMR (600 MHz, CDCl₃ at 298 K) spectroscopic titration result of **10** against 100 equiv of TBAF.

Figure S25. (a–g) Variable temperature ¹H NMR (400 MHz in CDCl₃) spectra of **10** with 100 equiv TBAF. The signal at 16.42 ppm corresponds to the generation of HF_2^- , which is visible at 233 K (f), and 213 K (g).

Figure S26. ¹H NMR (600 MHz, CDCl₃ at 298 K) spectra of **10** (a), with 100 equiv TBAF (b), and the organic phase after aqueous extraction (c). The spectrum (c) reveals that the supramolecular receptor releases TBAF upon aqueous wash.

Figure S27. ¹H NMR (600 MHz, CDCl₃ at 298 K) spectroscopic titration results of **10** against 100 equiv of TBACl (a), and 100 equiv of TBAOAc (b).

Figure S28. ¹H NMR (600 MHz, CDCl₃ at 298 K) spectroscopic titration results of **10** against 100 equiv of TBAHSO₄ (a), and 100 equiv of TBANO₃ (b).

Figure S29. ¹H NMR spectra of **10** with different concetration from 5 mM to 5 μ M performed in a) CDCl₃ and b) THF-*d*₈, via ¹H NMR spectroscopic method at 298 K.

Figure S30. ¹H NMR (600 MHz, DMF- d_7 at 298 K) spectroscopic titration result of 10 against 300 equiv of H₂SO₄.

Figure S31. a) ¹H-¹H COSY (600 MHz, CDCl₃ at 298 K) spectra of receptor 10.

II. Additional Photophysical Data from UV-vis Spectroscopic Analyses

Figure S32. UV–vis spectroscopic titration (THF at 298 K) results of $(10)_n$ with acetic Acid (a), and propionic Acid (b).

III. Single Crystal X-ray Crystallography

(a) Single crystal X-ray diffraction analysis of the precursor 5:

Colorless rod-shaped crystals was obtained by vapor diffusion of hexanes into a THF solution of **5**. The data were collected on a Bruker D8 Venture diffractometer with a PHOTON 100 detector and a μ -focus Cu $K\alpha$ radiation source ($\lambda = 1.5418$ Å). The data were collected at 173 K. Crystallographic data are listed in the Table S1. Data were collected using Bruker APEX III software. Unit cell refinement and data reduction were performed using Bruker SAINT V8.37A software.^{S1} The structure was solved by direct methods using SHELXT^{S2} and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-2018/3. The hydrogen atoms were calculated in ideal positions with a riding mode.

Crystallographic data has been deposited in the Cambridge Crystallographic Data Center with CCDC number: 2056093. This data can be obtained free of charge at <u>http://www.ccdc.cam.ac.uk/data_request/cif.</u>

Identification code	Precursor 5	
Empirical formula	C ₂₇ H ₃₇ N ₃ O ₅	
Formula weight	483.59	
Temperature	173(2) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.2281(7) Å	$\alpha = 104.145(14)^{\circ}$
	b = 15.7183(18) Å	$\beta = 99.996(11)^{\circ}$
	c = 22.029(3) Å	$\gamma = 102.736(8)^{\circ}$
Volume	2615.6(6) Å ³	
Z	4	
Calculated density	1.228 Mg/m ³	
Absorption coefficient	0.687 mm^{-1}	
F(000)	1040	
Crystal size	$0.200 \times 0.100 \times 0.10$	0 mm^3
Theta range for data collection	3.016 to 68.416°	
Limiting indices	$-9 \le h \le 9, -18 \le k$	$\leq 18, -26 \leq l \leq 26$
Reflections collected/unique	35010 / 9512 [R(int)	= 0.0227]
Completeness to $\theta = 67.679^{\circ}$	99.4%	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.935 and 0.875	
Refinement method	Full-matrix least-squ	ares on F ²
	S16	

Table S1. Crystallographic data and structure refinement parameters for precursor 5.

Data / restraints / parameters	9512 / 6 / 655
Goodness-of-fit on F^2	1.018
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0354, wR_2 = 0.1234$
R indices (all data)	$R_1 = 0.0384, wR_2 = 0.1289$
Extinction coefficient	n/a
Largest diff. peak and hole	0.213 and -0.175 e.Å ⁻³

Figure S33. Asymmetric unit of **5** obtained from the single crystal X-ray diffraction analysis. The thermal ellipsoids are scaled to the 30% probability level.

Figure S34. Different views of supramolecular network formed by precursor **5** obtained from a single crystal X-ray diffraction analysis.

(b) X-ray diffraction analysis of single crystals of 10 grown from CHCl₃: Yellow block shaped crystals was obtained by vapor diffusion of petroleum ether into an anhydrous CHCl₃ solution of 10. The data were collected on a Rigaku XtaLAB AFC12 diffractometer with a μ -focus Cu*K* α radiation source ($\lambda = 1.5418$ Å) and a Kappa goniometer. The data were collected

at 296 K. Crystallographic data are listed in the Table S2. Data were collected using CrysAlisPro 1.171.39.32a software.^{S3} Unit cell refinement and data reduction were performed using the same software. The structure was solved by direct methods using SHELXT^{S2} and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-2018/3. The hydrogen atoms were calculated in ideal positions with a riding mode.

Crystallographic data has been deposited in the Cambridge Crystallographic Data Center with CCDC number: 2056094. This data can be obtained free of charge at <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>.

Identification code	10 in CHCl ₃
Empirical formula	$C_{43}H_{47}N_5O_4$
Formula weight	697.85
Temperature	296(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	C2/m
Unit cell dimensions	$a = 14.0979(9) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 24.7324(12) \text{ Å}$ $\beta = 100.784 (6)^{\circ}$
	$c = 15.4405(8) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	5288.6(5) Å ³
Ζ	4
Calculated density	0.876 g/m^3
Absorption coefficient	0.452 mm^{-1}
F(000)	1488
Crystal size	$0.350 \times 0.240 \times 0.150 \text{ mm}^3$
Theta range for data collection	3.658 to 66.600°
Limiting indices	$-16 \le h \le 16, -29 \le k \le 26, -18 \le l \le 14$
Reflections collected/unique	26035 / 4780 [R(int) = 0.0581]
Completeness to $\theta = 66.600^{\circ}$	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.935 and 0.858
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4780 / 0 / 242
Goodness-of-fit on F^2	1.021
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0931, wR_2 = 0.2403$

Table S2. Crystallographic data and structure refinement parameters for receptor 10 grown fromanhydrous CHCl3.

R indices (all data)	$R_1 = 0.1162, wR_2 = 0.2623$
Extinction coefficient	n/a
Largest diff. peak and hole	0.593 and -0.232 e.Å ⁻³

Figure S35. Asymmetric unit of **10** obtained from the single crystal X-ray diffraction analysis. The thermal ellipsoids are scaled to the 30% probability level.

Figure S36. Different views of the single crystal X-ray structure of $(10)_2$ dimeric unit (a, b); crystalpacking diagram (viewed along the a-axis) of $(10)_2$ grown from anhydrous CHCl₃ solvent (c).

Figure 37. (a,b) Ball-and-stick and space-filling model representing of the crystal packing of the discrete pseudo-macrocyclic cage-like structure of hydrogen-bonded supramolecular dimeric units of (10)₂ grown from CHCl₃. Solvent molecules (CHCl₃) are omitted for clarity.

(c) Single crystal X-ray diffraction analysis of (10)_n grown from anhydrous DMF:

Light-yellow block shaped crystals was obtained by slow evaporation of DMF solution of receptor **10**. The data were collected on a Bruker D8 Venture diffractometer with a μ -focus Cu $K\alpha$ radiation source ($\lambda = 1.5418$ Å). The data were collected at 150 K. Crystallographic data are listed in the Table S3. Data were collected using APEX-II CCD software. Unit cell refinement and data reduction were performed using SAINT V8.40B software. The structure was solved by direct methods using SHELXT^{S2} and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-2018/2. The hydrogen atoms were calculated in ideal positions with a riding mode.

Crystallographic data has been deposited in the Cambridge Crystallographic Data Center with CCDC number: 2058193. This data can be obtained free of charge at <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>.

Identification code	10 in DMF	
Empirical formula	$C_{95}H_{135}N_{13}O_{11}$	
Formula weight	1635.15	
Temperature	150 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 14.4978(6) Å	$\alpha = 107.090(2)^{\circ}$
	b = 15.2219(6) Å	$\beta = 104.589(2)^{\circ}$
	c = 23.1319(9) Å	$\gamma = 93.241(2)^{\circ}$
Volume	4674.8(3) Å ³	
Ζ	2	
Calculated density	1.162 g/m^3	
Absorption coefficient	0.608 mm^{-1}	
F(000)	1768	
Crystal size	$0.12 \times 0.07 \times 0.06$ m	m ³
Theta range for data collection	4.164 to 133.632°	
Limiting indices	$-17 \le h \le 17, -18 \le$	$k \le 18, -27 \le l \le 27$
	S20	

Table S3. Crystal data and structure refinement for $(10)_n$ grown from anhydrous DMF.

Reflections collected/unique	52341 / 16478 [R(int) = 0.0462]
Completeness to $\theta = 66.816^{\circ}$	99.2%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.664 and 0.753
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	16478 / 284 / 1223
Goodness-of-fit on F^2	1.035
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0621, wR_2 = 0.1787$
R indices (all data)	$R_1 = 0.0720, wR_2 = 0.1858$
Extinction coefficient	n/a
Largest diff. peak and hole	$0.75 \text{ and } -0.29 \text{ e.}\text{\AA}^{-3}$

Figure S38. Asymmetric unit of $(10)_n$ obtained from the single crystal X-ray diffraction analysis. The thermal ellipsoids are scaled to the 30% probability level.

Figure S39. Two different views of hydrogen-bonded 1D infinite polymeric chain of $(10)_n$ grown from DMF. For clarification the solvent molecules are omitted.

Figure S40. The hydrogen-bonding and distance between "O" (of DMF guest) and "N" (of pyrrole) determined from the single crystal X-ray structure of $(10)_n$ grown from anhydrous DMF.

IV. Additional Data from DFT Calculations

Figure S41. Electrostatic potential maps of pyridine-based receptor 10 (left) used under present studies and naphthyridine-based receptor 11 (right) reported earlier.

Figure S42. Different views of theoretically predicted energy minimized supramolecular structures of receptor–acid complex with the chemical formula $[(10 \cdot H)^+(Cl^-)]_2$

V. References & Notes

S1. Bruker SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2017.

S2. Sheldrick, G. M., SHELXT-integrated space-group and crystal-structure determination. *Acta Cryst. A*, **2015**, *71*, 3–8.

S3. CrysAlisPro. Agilent Technologies (2013). Agilent Technologies UK Ltd., Oxford, UK, SuperNova CCD System, CrysAlicPro Software System, 1.171.39.46.

V. Cartesian Coordinate for 10

Symbol	Х	Y	Z
0	-4.84804	3.725273	-1.899
0	-3.90385	4.962539	-0.2659
Ν	-0.28248	-3.49667	-0.60509
Ν	-2.28307	-1.76231	-0.28834
Н	-1.33602	-1.47855	-0.08208
Ν	-3.89545	1.408963	-0.71907
н	-4.34807	1.282671	-1.6146
С	-0.59823	-6.22942	-0.80508
н	-0.72253	-7.30576	-0.87764
С	-1.7151	-5.4034	-0.80132
н	-2.71407	-5.81895	-0.83641
С	-1.51193	-4.02006	-0.71159
С	-2.59513	-3.03523	-0.67892
С	-3.95375	-3.05377	-0.98493
С	-4.45466	-1.74106	-0.75336
С	-3.3841	-0.96244	-0.32634
С	-3.31041	0.445588	0.04185
С	-2.71909	1.071612	1.139889
С	-2.97294	2.463521	1.021524
С	-3.69511	2.639629	-0.15255
С	-4.21434	3.800383	-0.8659
С	-4.37748	6.141453	-0.92974
С	-3.91196	7.326087	-0.11105
С	-4.77127	-4.22292	-1.45445
н	-5.5571	-3.86338	-2.12797

Н	-4.1519	-4.89496	-2.05783
С	-5.41608	-4.99183	-0.2953
Н	-4.65471	-5.36847	0.395742
Н	-6.00688	-5.83927	-0.65616
Н	-6.07619	-4.33243	0.277667
С	-5.88721	-1.28878	-0.84173
Н	-5.99591	-0.45671	-1.54857
Н	-6.49613	-2.1029	-1.24965
С	-6.44956	-0.86872	0.521453
Н	-6.38376	-1.69837	1.232468
Н	-7.49732	-0.56468	0.439804
Н	-5.88125	-0.02888	0.934485
С	-2.51274	3.529912	1.973966
Н	-3.26634	4.319112	2.034529
Н	-2.41764	3.099166	2.977325
С	-1.17362	4.139238	1.544455
Н	-0.39572	3.36894	1.490198
Н	-0.84306	4.909334	2.24851
Н	-1.26775	4.592134	0.552993
С	-2.07975	0.38989	2.317138
Н	-1.49719	-0.4806	1.99527
Н	-1.36268	1.074609	2.786083
С	-3.12256	-0.06009	3.346444
Н	-3.70445	0.795898	3.702913
Н	-2.65136	-0.54227	4.208289
Н	-3.81897	-0.77079	2.889763
0	6.37892	2.169276	-1.65356
0	5.214814	3.905302	-0.80441
Ν	2.014123	-2.21886	-0.45536
Н	1.169618	-1.72019	-0.69463
Ν	4.474692	0.401386	-0.6986
Н	5.20331	-0.01072	-1.26577
С	0.676219	-5.6873	-0.70038
Н	1.551115	-6.32438	-0.69881
С	0.795681	-4.29584	-0.58784
С	2.065682	-3.58355	-0.43332
С	3.391731	-3.94229	-0.18939
С	4.13389	-2.73404	-0.04936

C	3.240471	-1.68042	-0.2249
С	3.407741	-0.23623	-0.14701
С	2.603358	0.729332	0.461956
С	3.224816	1.989141	0.257504
С	4.380626	1.749935	-0.47506
С	5.425478	2.598023	-1.03556
С	6.205436	4.790904	-1.34203
С	5.778268	6.198786	-0.98743
С	3.93602	-5.33126	-0.00665
Н	5.024278	-5.30866	-0.1218
н	3.575778	-5.99044	-0.80439
С	3.587207	-5.92063	1.364981
н	2.502707	-5.96152	1.508743
н	3.989069	-6.9321	1.478567
н	4.001135	-5.29401	2.160911
С	5.576674	-2.58577	0.351236
н	6.121579	-1.96449	-0.37015
н	6.066936	-3.56402	0.321401
С	5.729479	-1.98367	1.753164
Н	5.224447	-2.6116	2.493655
н	6.783405	-1.8967	2.033602
н	5.28022	-0.98623	1.797735
С	2.689706	3.317854	0.710145
Н	3.514176	3.958872	1.033775
Н	2.040749	3.16537	1.580582
С	1.900431	4.024851	-0.39737
н	1.067322	3.402136	-0.73976
Н	1.491514	4.975917	-0.04133
Н	2.552083	4.224367	-1.25289
С	1.386917	0.486865	1.313105
Н	0.911182	-0.46173	1.042245
Н	0.638343	1.268088	1.124961
С	1.737263	0.438799	2.80491
Н	2.197327	1.377542	3.129134
н	0.848094	0.259422	3.417707
н	2.454389	-0.36619	2.993597
н	7.179603	4.534307	-0.91519
н	6.267098	4.637846	-2.42353

Н	4.796609	6.42048	-1.41435
Н	5.718992	6.320505	0.097228
Н	6.499759	6.920327	-1.37965
Н	-3.9764	6.159303	-1.94741
Н	-5.46793	6.092775	-1.00427
Н	-4.3229	7.279328	0.90077
Н	-2.82109	7.33819	-0.04099
Н	-4.24152	8.258128	-0.5776

Cartesian Coordinate for 11

Symbol	Х	Y	Z
0	-7.08367	2.025396	-1.7324
0	-6.28293	3.856709	-0.67791
0	2.469746	3.788331	-2.31091
0	3.292948	5.428342	-0.9921
Ν	-5.30463	0.424521	-0.35569
Н	-5.86422	-0.05008	-1.05146
Ν	-2.79026	-2.04801	0.26834
Н	-1.93164	-1.52233	0.164287
Ν	-0.45947	-3.30117	0.079407
Ν	1.810888	-2.96925	-0.07522
Ν	3.697121	-1.10312	-0.09912
Н	2.728497	-0.8532	0.056432
Ν	3.847842	1.889862	-0.8513
Н	3.356256	1.539031	-1.66263
С	-5.36627	1.775269	-0.13797
С	-4.40731	2.106906	0.814856
С	-3.74884	0.896845	1.168608
С	-4.32983	-0.12657	0.41723
С	-4.05556	-1.55851	0.368846
С	-4.92821	-2.64346	0.41428
С	-4.13825	-3.82462	0.329359
С	-2.8045	-3.41699	0.243095
С	-1.51513	-4.09901	0.153183
С	-1.4008	-5.52277	0.154961

п	-2.28319	-6.144	0.222577
С	-0.15608	-6.08342	0.074314
Н	-0.02981	-7.16326	0.075409
С	0.984308	-5.24995	-0.00954
С	2.31544	-5.722	-0.09207
Н	2.50367	-6.79277	-0.09138
С	3.34808	-4.82816	-0.16682
Н	4.372616	-5.16973	-0.22176
С	3.049647	-3.43172	-0.15993
С	0.778694	-3.84245	-0.00211
С	4.092274	-2.40831	-0.22083
С	5.483916	-2.41613	-0.34562
С	5.913906	-1.05953	-0.28404
С	4.777827	-0.27371	-0.12219
С	4.635085	1.175484	0.000561
С	5.193068	2.06429	0.91782
С	4.725514	3.366101	0.584731
С	3.894706	3.219027	-0.52183
С	-6.32618	2.53705	-0.92786
С	-7.18601	4.676014	-1.43967
Н	-8.15509	4.174515	-1.49527
Н	-7.28115	5.590431	-0.85116
С	-6.63157	4.958387	-2.82387
С	3.146093	4.145337	-1.36392
С	2.555918	6.39744	-1.75703
Н	3.077446	7.338459	-1.57398
Н	2.627328	6.139638	-2.81622
С	1.10981	6.462377	-1.30078
Н	0.606466	5.512512	-1.49306
Н	0.583284	7.249907	-1.84742
Н	1.055588	6.687977	-0.23235
С	-4.1341	3.467354	1.391928
н	-3.16629	3.440577	1.905129
Н	-4.04566	4.197067	0.581022
С	-5.22429	3.934523	2.365511
Н	-6.17761	4.038849	1.841752
н	-4.96462	4.902715	2.804189
Н	-5.36112	3.214311	3.177458

С	-2.67805	0.73524	2.211765
Н	-2.24577	-0.26711	2.136058
н	-1.86021	1.440033	2.016849
С	-3.19845	0.938366	3.639916
н	-3.57985	1.953602	3.780737
н	-2.40332	0.771265	4.372393
н	-4.0146	0.24099	3.850371
С	-6.4195	-2.56473	0.579897
н	-6.73684	-3.26378	1.363389
н	-6.68153	-1.56482	0.94328
С	-7.20109	-2.8663	-0.70469
н	-6.90781	-2.19078	-1.51512
н	-8.27778	-2.75838	-0.54549
н	-7.00942	-3.8869	-1.04933
С	-4.69868	-5.21982	0.308255
н	-4.16018	-5.86413	1.012515
н	-5.7299	-5.18348	0.676724
С	-4.69368	-5.84649	-1.09347
н	-5.28198	-5.23753	-1.78555
н	-5.11708	-6.85535	-1.07662
н	-3.67975	-5.90453	-1.50039
С	5.044762	4.638499	1.317833
н	5.321918	5.415444	0.598684
н	5.91989	4.463701	1.953914
С	3.875334	5.144736	2.172596
Н	3.022936	5.392102	1.53487
н	4.16043	6.042268	2.729741
н	3.552704	4.382824	2.888226
С	6.071292	1.687601	2.077514
н	6.996018	2.278702	2.052731
н	6.369228	0.639819	1.96529
С	5.385135	1.866747	3.436888
н	5.126403	2.914023	3.616474
н	6.038282	1.536537	4.249975
н	4.461752	1.281433	3.47729
С	7.317258	-0.54418	-0.4362
Н	7.985023	-1.05972	0.266212
н	7.333296	0.514366	-0.15638

С	7.86269	-0.68634	-1.86239
Н	7.922627	-1.73606	-2.16377
Н	8.865084	-0.25546	-1.94205
Н	7.208731	-0.17133	-2.57225
С	6.399517	-3.58947	-0.56444
Н	7.429838	-3.25704	-0.39676
Н	6.219126	-4.36521	0.188938
С	6.289153	-4.18762	-1.97393
Н	5.274366	-4.54186	-2.17797
Н	6.978849	-5.02753	-2.10116
Н	6.52287	-3.43208	-2.72909
Н	-5.64718	5.428144	-2.75324
Н	-6.54671	4.032416	-3.39633
Н	-7.3017	5.636757	-3.35966

Cartesian Coordinate for [10•HCl]₂

Symbol	Х	Y	Z
0	-1.15441	5.245714	-1.29865
0	-1.41165	4.797068	-3.48451
Ν	5.410176	-0.00458	0.300831
Ν	4.290339	2.433143	-0.71263
Н	3.961849	1.635658	-1.29396
Ν	1.53025	4.457005	-1.45885
Н	1.261448	4.738148	-0.51497
С	7.751151	-0.00661	1.66857
Н	8.706317	-0.00744	2.184355
С	7.163533	1.203651	1.328471
Н	7.655445	2.138671	1.548858
С	5.953483	1.210862	0.62673
С	5.269453	2.42168	0.248671
С	5.371944	3.733288	0.760033
С	4.436257	4.526099	0.058597
С	3.785808	3.679914	-0.84467
С	2.72575	3.926616	-1.82076
С	2.686506	3.611802	-3.17945
С	1.395529	3.958233	-3.64535

С	0.699557	4.470724	-2.54948
С	-0.67918	4.878114	-2.36606
С	-2.80912	5.096757	-3.3502
С	-3.44544	4.821304	-4.69588
С	6.258705	4.252676	1.856254
Н	5.712963	5.031832	2.40059
Н	6.461247	3.468187	2.59294
С	7.566999	4.855102	1.326266
н	8.13993	4.124086	0.746546
н	8.195968	5.220938	2.143113
н	7.34944	5.693358	0.657422
С	4.204909	6.006835	0.182516
н	3.158783	6.196074	0.4471
н	4.808627	6.398952	1.009583
С	4.559427	6.761219	-1.10563
Н	5.604998	6.590622	-1.38195
Н	4.404325	7.83692	-0.98257
Н	3.933184	6.420842	-1.93627
С	0.879935	3.700512	-5.03181
Н	0.198352	4.498314	-5.33786
Н	1.725059	3.710155	-5.72888
С	0.165494	2.344465	-5.11571
н	0.831308	1.538774	-4.79177
н	-0.16483	2.136862	-6.13839
н	-0.7105	2.33879	-4.46052
С	3.819618	3.091214	-4.01598
Н	4.524435	2.537668	-3.38962
Н	3.433791	2.358963	-4.73397
С	4.556484	4.220909	-4.74691
н	3.87224	4.790743	-5.38397
н	5.361432	3.826369	-5.37447
н	4.993897	4.918503	-4.02516
0	-1.16358	-5.24254	-1.29928
0	-1.4199	-4.79346	-3.48513
Ν	4.286247	-2.44023	-0.71288
н	3.959112	-1.64211	-1.29412
N	1.522626	-4.45907	-1.45941
Н	1.25331	-4.73986	-0.51557

С	7.161454	-1.21585	1.32843
Н	7.651753	-2.15172	1.548808
С	5.951426	-1.22096	0.626641
С	5.265363	-2.43057	0.248424
С	5.365588	-3.74242	0.759619
С	4.428601	-4.53355	0.058016
С	3.779595	-3.68612	-0.84513
С	2.719094	-3.93079	-1.82126
С	2.680404	-3.61568	-3.17989
С	1.388759	-3.95959	-3.64581
С	0.691878	-4.47101	-2.55003
С	-0.68761	-4.87587	-2.36667
С	-2.81795	-5.09042	-3.35082
С	-3.45376	-4.81363	-4.69646
С	6.251464	-4.26347	1.855767
Н	5.704443	-5.04184	2.399948
Н	6.455271	-3.47946	2.592615
С	7.558785	-4.86792	1.325687
Н	8.132907	-4.13773	0.746107
Н	8.18715	-5.23493	2.142473
Н	7.339871	-5.7057	0.656685
С	4.194803	-6.01392	0.181629
Н	3.148387	-6.20147	0.446241
Н	4.797937	-6.40723	1.008558
С	4.547978	-6.76861	-1.10671
Н	5.593814	-6.5997	-1.38306
Н	4.391088	-7.84407	-0.98387
Н	3.922254	-6.42701	-1.93724
С	0.873509	-3.70043	-5.03213
Н	0.190704	-4.49704	-5.33856
Н	1.718593	-3.71099	-5.72923
С	0.161119	-2.34325	-5.11534
Н	0.828139	-1.53875	-4.79093
Н	-0.16884	-2.13461	-6.13792
н	-0.71491	-2.33661	-4.46019
С	3.814427	-3.09696	-4.01634
Н	4.520735	-2.54567	-3.38967
Н	3.430097	-2.36312	-4.73351

С	4.548461	-4.22769	-4.74852
Н	3.862715	-4.7954	-5.38586
Н	5.354097	-3.83443	-5.37599
Н	4.984513	-4.92692	-4.02753
0	1.16373	5.242272	1.299372
0	1.419821	4.793188	3.485243
Ν	-5.41022	0.004401	-0.30097
Ν	-4.28623	2.439998	0.71269
Н	-3.95899	1.641846	1.293829
Ν	-1.52257	4.458791	1.459295
Н	-1.25332	4.739851	0.515522
С	-7.75122	0.006413	-1.66866
Н	-8.70639	0.007232	-2.18443
С	-7.16155	1.21566	-1.3285
Н	-7.65188	2.151523	-1.54882
С	-5.95148	1.22078	-0.62677
С	-5.26541	2.43039	-0.24855
С	-5.3657	3.742271	-0.75965
С	-4.42866	4.533364	-0.05807
С	-3.77958	3.685883	0.844966
С	-2.71905	3.930507	1.821086
С	-2.68036	3.615233	3.179674
С	-1.38873	3.959112	3.645648
С	-0.69184	4.47067	2.549933
С	0.687653	4.875574	2.366699
С	2.817927	5.089994	3.351053
С	3.453608	4.81286	4.696686
С	-6.25168	4.263382	-1.85569
Н	-5.70476	5.041874	-2.39979
Н	-6.45544	3.479451	-2.59263
С	-7.55903	4.867645	-1.32546
Н	-8.13304	4.137332	-0.74592
Н	-8.18748	5.234685	-2.14216
Н	-7.34015	5.705368	-0.65637
С	-4.19491	6.013759	-0.18159
Н	-3.14849	6.201385	-0.44614
Н	-4.79802	6.407084	-1.00852
С	-4.54818	6.768342	1.10679

Н	-5.59401	6.599344	1.3831
Н	-4.39136	7.843827	0.984022
Н	-3.92245	6.426729	1.937308
С	-0.8735	3.699763	5.031938
Н	-0.19069	4.496324	5.33849
Н	-1.7186	3.710245	5.729023
С	-0.16115	2.34256	5.114985
Н	-0.82821	1.538113	4.790499
н	0.168824	2.13379	6.137531
н	0.714855	2.335949	4.45981
С	-3.81437	3.096386	4.016075
Н	-4.5207	2.545206	3.389331
Н	-3.43002	2.36242	4.733108
С	-4.54839	4.226989	4.748464
н	-3.86263	4.794613	5.385864
Н	-5.35399	3.833614	5.375908
Н	-4.98449	4.926323	4.027605
0	1.154988	-5.24404	1.29881
0	1.411747	-4.79596	3.484809
Ν	-4.29041	-2.43322	0.712594
Н	-3.96189	-1.63569	1.293865
Ν	-1.53015	-4.45669	1.458971
Н	-1.26126	-4.73778	0.515101
С	-7.16358	-1.20384	-1.32859
н	-7.65548	-2.13886	-1.54899
С	-5.95353	-1.21105	-0.62684
С	-5.2695	-2.42183	-0.24873
С	-5.37187	-3.73345	-0.7601
С	-4.4362	-4.52621	-0.05858
С	-3.78583	-3.67996	0.844698
С	-2.72578	-3.92653	1.820837
С	-2.68666	-3.61172	3.17952
С	-1.39563	-3.95786	3.64547
С	-0.69949	-4.4702	2.549641
С	0.679429	-4.87701	2.366261
С	2.809391	-5.09486	3.350507
С	3.445472	-4.81947	4.696304
С	-6.25856	-4.25288	-1.85636

-5.71283	-5.03212	-2.40057
-6.46098	-3.46845	-2.59315
-7.56695	-4.85514	-1.32642
-8.13984	-4.12403	-0.74678
-8.1959	-5.22098	-2.14328
-7.34951	-5.69337	-0.6575
-4.2048	-6.00694	-0.18242
-3.15865	-6.19614	-0.44692
-4.80844	-6.39912	-1.00951
-4.55938	-6.76128	1.105735
-5.60498	-6.5907	1.381972
-4.40424	-7.83698	0.982715
-3.93321	-6.42086	1.936405
-0.88011	-3.69991	5.031911
-0.19829	-4.49748	5.338014
-1.72522	-3.70975	5.728996
-0.16606	-2.34364	5.115693
-0.83209	-1.53818	4.791591
0.164146	-2.1358	6.138353
0.709969	-2.3378	4.460544
-3.81988	-3.0913	4.016002
-4.52478	-2.53791	3.389588
-3.4342	-2.35894	4.733962
-4.55656	-4.22108	4.746986
-3.87221	-4.79075	5.384085
-5.36159	-3.82666	5.374504
-4.99383	-4.9188	4.025266
2.919918	-6.1418	3.04758
3.229252	-4.46824	2.555532
4.516901	-5.03412	4.655637
3.3108	-3.77133	4.975557
2.995825	-5.4454	5.471236
4.525369	5.025859	4.656149
3.004938	5.439054	5.471976
3.317297	3.764776	4.975345
3.23679	4.463178	2.555705
2.930064	6.136932	3.048727
-2.92994	-6.13731	-3.04827
	-5.71283 -6.46098 -7.56695 -8.13984 -8.1959 -7.34951 -4.2048 -3.15865 -4.80844 -4.55938 -5.60498 -4.40424 -3.93321 -0.88011 -0.19829 -1.72522 -0.16606 -0.83209 0.164146 0.709969 -3.81988 -4.52478 -3.4342 -4.55656 -3.87221 -5.36159 -4.99383 2.919918 3.229252 4.516901 3.3108 2.995825 4.525369 3.004938 3.317297 3.23679 2.930064 -2.92994	-5.71283-5.03212-6.46098-3.46845-7.56695-4.85514-8.13984-4.12403-8.1959-5.22098-7.34951-5.69337-4.2048-6.00694-3.15865-6.19614-4.80844-6.39912-4.55938-6.76128-5.60498-6.5907-4.40424-7.83698-3.93321-6.42086-0.88011-3.69991-0.19829-4.49748-1.72522-3.70975-0.16606-2.34364-0.83209-1.538180.709969-2.3378-3.81988-3.0913-4.52478-2.53791-3.4342-2.35894-4.55656-4.22108-3.87221-4.79075-5.36159-3.82666-4.99383-4.91882.919918-6.14183.229252-4.468244.516901-5.034123.3108-3.771332.995825-5.44544.5253695.0258593.0049385.4390543.3172973.7647763.236794.4631782.9300646.136932-2.92994-6.13731

Н	-3.23685	-4.46349	-2.55558
н	-3.31775	-3.76555	-4.97529
н	-3.00498	-5.43983	-5.47169
н	-4.52546	-5.02691	-4.65582
н	-3.22926	4.470587	-2.55501
н	-2.91906	6.143842	-3.04758
н	-2.99545	5.446724	-5.47103
н	-3.31139	3.772998	-4.9748
н	-4.51673	5.036601	-4.65524
н	-4.55261	0.003659	0.269711
н	4.552639	-0.00382	-0.26998
CI	-3.36763	0.00256	2.281475
CI	3.367968	-0.0027	-2.28171