Supplementary Information

Online In-Tube Solid-Phase Microextraction Coupled to Liquid Chromatography–Tandem Mass Spectrometry for the Determination of Tobacco-Specific Nitrosamines in Hair Samples

Atsushi Ishizaki¹, Hiroyuki Kataoka^{1,*}

¹School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan

TSNA	RT ¹ (min)	Mass transition (m/z)	Dwell time (msec)	$DP^{2}(V)$	$EP^{3}(V)$	$CE^{4}(V)$	CXP ⁵ (V)
NNK	2.1	208.2 →122.1	100	50	10	15	5
NNN	2.0	$178.2 \rightarrow 148.1$	100	45	10	15	5
NAT	2.6	$190.2 \rightarrow 160.2$	100	45	10	15	5
NAB	2.7	192.2 →162.3	100	45	10	15	5
NNAL	1.8	210.2 →149.2	100	50	10	15	5
NNK-d ₃	2.1	$211.3 \rightarrow 122.1$	100	50	10	15	5
NNN-d ₄	2.0	182.2 →152.1	100	45	10	15	5
NAT-d ₄	2.6	194.2 →164.4	100	45	10	15	5
NAB-d ₄	2.7	196.3 →163.3	100	45	10	15	5
NNAL-d ₅	1.8	215.3 →150.9	100	50	10	15	5

Table S1. MRM transitions and setting parameters for TSNAs and their stable isotope-labeled compounds.

¹Retention time (min)

²Declustering potential (V)

³Entrance potential (V)

⁴Collision energy (V)

⁵Collision cell exit potential (V)

Table S2. Program for the in-tube SPME process.

Sequence		Switching valve	Vial	Draw/ejection		
	Event			Cycle ¹	Volume	Speed
					(µL)	(µL min ⁻¹)
1	Conditioning of the capillary	Load	MeOH	D/E (2)	40	200
2	Drawing of air into the capillary	Load	Empty	D (1)	50	200
3	Conditioning of the capillary	Load	Water	D/E (2)	40	200
4	Extraction of analytes into the capillary	Load	Sample	D/E (30)	40	200
5	Needle washing	Load	MeOH	D/E (1)	2	200
6	Desorption of analytes from the capillary	Inject	_	-	-	_
7	HPLC separation of analytes and return	Load	_	_	_	-
	to sequence 1					

¹ D: draw, E: ejection.

Figure S1. Effects of capillary coatings on the in-tube SPME of TSNAs. TSNAs were extracted by 30 draw/eject cycles of 40 μ L of standard solution (1 ng mL⁻¹) at a flow rate of 200 μ L min⁻¹.

Figure S2. Effects of the number of draw/eject cycles on the in-tube SPME of TSNAs. TSNAs were extracted on a Supel-Q PLOT capillary by the indicated number of draw/eject cycles of 40 μ L of standard solution (1 ng mL⁻¹) at a flow rate of 200 μ L min⁻¹.

Figure S3. Structures of the five TSNAs assayed and their respective stable isotope-labeled TSNAs as internal standards.