Physical, Chemical and Rheological Characterization of Tuber and Starch from Ceiba aesculifolia subsp. parvifolia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Characterization of Ceiba aesculifolia subsp. parvifolia Tuber
2.2. Proximal Composition of Ceiba aesculifolia subsp. parvifolia Tuber Pulp
2.3. Polyphenolic Content and Antioxidant Activity of Ceiba aesculifolia subsp. parvifolia Tuber
2.4. Characterization of Ceiba aesculifolia subsp. parvifolia Starch
2.4.1. Color Parameters and Extraction Yield
2.4.2. Chemical Composition
2.4.3. Rheological Measurements
2.4.4. Thermal Properties
2.4.5. Pasting Properties
2.4.6. X-ray Diffractometry
2.4.7. Fourier Transform Infrared (FT-IR) Spectroscopy
2.4.8. Scanning Electron Microscopy
3. Materials and Methods
3.1. Materials
3.2. Physical Characterization of Ceiba aesculifolia subsp. parvifolia Tuber
3.3. Chemical Composition Analysis of Ceiba aesculifolia subsp. parvifolia Tuber
3.4. Characterization of Ceiba aesculifolia subsp. parvifolia Starch
3.4.1. Starch Isolation
3.4.2. Color Analysis
3.4.3. Chemical Composition and Starch Yield
3.4.4. Rheological Studies
3.4.5. Differential Scanning Calorimetry (DSC)
3.4.6. Pasting Properties
3.4.7. X-ray Diffractometry (XRD)
3.4.8. Fourier Transform Infrared (FT-IR) Spectroscopy
3.4.9. Scanning Electron Microscopy (SEM)
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Turner, N.J.; Luczaj, L.J.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and Agroecology. Crit. Rev. Plant. Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Shan, S.; Huang, X.; Shah, M.H.; Abbasi, A.M. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed Res. Int. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pagaza, E.M.; Fernández, R. La familia Bombacaceae en la cuenca del río Balsas, México. Polibotánica 2004, 71–102. Available online: https://www.encb.ipn.mx/assets/files/encb/docs/polibotanica/revistas/pb17/bomba.pdf (accessed on 6 June 2020).
- Franco, B.M.; Jiménez-Estrada, M.; Hernández-Hernández, A.B.; Hernández, L.B.; Rosas-López, R.; Durán, A.; Rodríguez-Monroy, M.A.; Canales-Martínez, M. Antimicrobial activity of the fiber produced by “pochote” Ceiba aesculifolia subsp. parvifolia. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Orozco, J.; Rodríguez-Monroy, M.A.; Martínez, K.E.; Flores, C.M.; Durán, A.; Rosas-López, R.; Hernández, L.B.; Canales, M. Evaluation of some medicinal properties of Ceiba aesculifolia subsp. parvifolia. J. Med. Plants Res. 2013, 7, 309–314. [Google Scholar] [CrossRef]
- Sánchez-Vélez, A.; García-Núñez, R.M. The dying Mexican tropical dry forest: Finding treasures among the ruins. Biodiversity 2000, 1, 16–26. [Google Scholar] [CrossRef]
- Avendaño, A.; Casas, A.; Dávila, P.; Lira, R. Use forms, management and commercialization of “pochote” Ceiba aesculifolia (H.B. & K.) Britten & Baker f. subsp. parvifolia (Rose) P.E. Gibbs & Semir (Bombacaceae) in the Tehuacán Valley, Central Mexico. J. Arid. Environ. 2006, 67, 15–35. [Google Scholar] [CrossRef]
- Espín, S.; Villacrés, E.; Brito, B. Caracterización Físico -Química, Nutricional y Funcional de Raíces y Tubérculos Andinos. In Raíces y Tubérculos Andinos: Alternativas para la Conservación y uso Sostenible en el Ecuador, 1st ed.; Barrera, V., Tapia, C., Monteros, A., Eds.; Instituto Nacional Autónomo de Investigaciones Agropecuarias: Quito, Ecuador; Lima, Peru,, 2004; pp. 92–116. Available online: http://cipotato.org/wp-content/uploads/2014/06/RTAs_Ecuador_04.pdf (accessed on 16 June 2020).
- Bagetti, M.; Facco, E.M.; Piccolo, J.; Hirsch, G.E.; Rodriguez-Amaya, D.; Kobori, C.N.; Vizzotto, M.; Emanuelli, T. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Cienc. e Tecnol. Aliment. 2011, 31, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, S.N.; Sajeev, M.S.; Anish, R.J. Functionality of Tuber Starches. In Starch in Food: Structure, Function and Applications, 2nd ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2018; pp. 421–508. [Google Scholar]
- Kunle, O. Starch source and its impact on pharmaceutical applications. In Chemical Properties of Starch, 1st ed.; Emeje, M., Ed.; IntechOpen: London, UK, 2016; pp. 1–14. [Google Scholar]
- Gebre-Mariam, T.; Abeba, A.; Schmidt, P.C. Isolation and physico-chemical properties of enset starch. Starch Starke 1996, 48, 208–214. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.L. Gelatinization and rheological properties of starch. Starch Starke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Biliaderis, C.G. The structure and interactions of starch with food constituents. Can. J. Physiol. Pharmacol. 1991, 69, 60–78. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CYTA J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Franklin, M.E.E.; Pushpadass, H.A.; Kumar, B.; Kulkarni, S.; Muthurayappa, M.; Kandasamy, R.; Venkatachalam, P.; Vellingiri, P. Physicochemical, thermal, pasting and microstructural characterization of commercial Curcuma angustifolia starch. Food Hydrocoll. 2017, 67, 27–36. [Google Scholar] [CrossRef]
- Jiménez-Hernández, J.; Salazar-Montoya, J.A.; Ramos-Ramírez, E.G. Physical, chemical and microscopic characterization of a new starch from chayote (Sechium edule) tuber and its comparison with potato and maize starches. Carbohydr. Polym. 2007, 68, 679–686. [Google Scholar] [CrossRef]
- Madrigal-Ambriz, L.V.; Hernández-Madrigal, J.V.; Carranco-Jáuregui, M.E.; Calvo-Carrillo, M.; Casas-Rosado, R. Caracterización física y nutricional de harina del tubérculo de “Malanga” (Colocasia esculenta L. Schott) de Actopan, Veracruz, México. Arch. Latinoam. Nutr. 2018, 68, 175–183. Available online: https://search.proquest.com/openview/cf1f760852cdc0cab6bc4ffe9df9370d/1?pq-origsite=gscholar&cbl=2032499 (accessed on 11 June 2020).
- Pérez, E.; Lares, M.; González, Z. Some Characteristics of Sagu (Canna edulis Kerr) and Zulu (Maranta sp.) Rhizomes. J. Agric. Food Chem. 1997, 45, 2546–2549. [Google Scholar] [CrossRef]
- Badui, S. Química de los Alimentos, 4th ed.; Pearson Educación Edo.: de Mexico, Mexico, 2006; 716p. [Google Scholar]
- López, O.V.; Viña, S.Z.; Pachas, A.N.A.; Sisterna, M.N.; Rohatsch, P.H.; Mugridge, A.; Fassola, H.E.; García, M.A. Composition and food properties of Pachyrhizus ahipa roots and starch. Int. J. Food Sci. Technol. 2010, 45, 223–233. [Google Scholar] [CrossRef]
- Yanniotis, S.; Petraki, A.; Soumpasi, E. Effect of pectin and wheat fibers on quality attributes of extruded cornsnack. J. Food Eng. 2007, 80, 594–599. [Google Scholar] [CrossRef]
- Singh, V.; Guizani, N.; Al-Alawi, A.; Claereboudt, M.; Rahman, M.S. Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties. Ind. Crops Prod. 2013, 50, 866–873. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, L.; Ezekiel, R.; Guraya, H.S. Microstructural, cooking and textural characteristics of potato (Solanum tuberosum L) tubers in relation to physicochemical and functional properties of their flours. J. Sci. Food Agric. 2005, 85, 1275–1284. [Google Scholar] [CrossRef]
- Johry, P.; Samsher, G.R.; Singh, B.R.; Vaishali, S.; Chandra, S. Development of cookies from potato flour and their quality evaluation. South Asian J. Food Technol. Environ. 2016, 2, 309–312. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Misra, A.; Srivastava, S.; Verma, S.; Rawat, A.K.S. Nutritional evaluation, antioxidant studies and quantification of poly phenolics, in Roscoea purpurea tubers. BMC Res. Notes 2015, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramona, H.M.; Gabriel, H.M.; Petru, N.; Radu, S.; Adina, N.; Ducu, S. The monitoring of mineral elements content in fruit purchased in supermarkets and food markets in Timisoara, Romania. Ann. Agric. Environ. Med. 2014, 21, 98–105. Available online: http://www.aaem.pl/The-monitoring-of-mineral-elements-content-in-fruit-purchased-in-supermarkets-and,72066,0,2.html (accessed on 11 June 2020).
- De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, 1st ed.; Yahia, E., Carrillo-López, A., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2019; pp. 253–271. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, M.; Hernández, T.; Caballero, J.; Romo, A.; Durán, A.; Lira, R. Análisis cuantitativo del conocimiento tradicional de las plantas medicinales en San Rafael, Coxcatlán, Valle de Tehuacán-Cuicatlán, Puebla, México. Acta Bot. Mex. 2006, 21–43. Available online: http://www.scielo.org.mx/pdf/abm/n75/n75a2.pdf (accessed on 11 June 2020).
- Canales, M.; Hernández, T.; Caballero, J.; Romo De Vivar, A.; Avila, G.; Duran, A.; Lira, R. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. J. Ethnopharmacol. 2005, 97, 429–439. [Google Scholar] [CrossRef]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Park, J.S.; Yang, J.S.; Hwang, B.Y.; Yoo, B.K.; Han, K. Hypoglycemic effect of Yacon tuber extract and its constituent, chlorogenic acid, in streptozotocin-induced diabetic rats. Biomol. Ther. 2009, 17, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, Q.; Ferdinand, U.; Gong, X.; Qu, Y.; Gao, W.; Ivanistau, A.; Feng, B.; Liu, M. Isolation and characterization of starch from light yellow, orange, and purple sweet potatoes. Int. J. Biol. Macromol. 2020, 160, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Sit, N.; Misra, S.; Deka, S.C. Characterization of physicochemical, functional, textural and color properties of starches from two different varieties of taro and their comparison to potato and rice starches. Food Sci. Technol. Res. 2014, 20, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Boudries, N.; Belhaneche, N.; Nadjemi, B.; Deroanne, C.; Mathlouthi, M.; Roger, B.; Sindic, M. Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria. Carbohydr. Polym. 2009, 78, 475–480. [Google Scholar] [CrossRef]
- Deng, M.; Reddy, C.K.; Xu, B. Morphological, physico-chemical and functional properties of underutilized starches in China. Int. J. Biol. Macromol. 2020, 158, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Hadziyev, D. Characterization of Potato Starch and Its Monoglyceride Complexes. Starch Starke 1981, 9, 290–300. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Garcia-Suarez, F.; Gutierrez-Meraz, F.; Sanchez-Rivera, M.; San Martin, E.; Bello-Pérez, L. Isolation and partial characterization of Mexican taro (Colocasia esculenta L.) starch. Starch Starke 2011, 3, 139–146. [Google Scholar] [CrossRef]
- Muller, C. Los camotes del pochote (Ceiba parvifolia) de Puebla. Bot. Sci. 1952, 14, 18–21. [Google Scholar] [CrossRef]
- Hernández-Lauzardo, A.N.; Méndez-Montealvo, G.; Velázquez Del Valle, M.G.; Solorza-Feria, J.; Bello-Pérez, L.A. Isolation and partial characterization of Mexican Oxalis tuberosa starch. Starch Staerke 2004, 56, 357–363. [Google Scholar] [CrossRef]
- Cruz, G.; Ribotta, P.; Ferrero, C.; Iturriaga, L. Physicochemical and rheological characterization of Andean tuber starches: Potato (Solanum tuberosum ssp. Andigenum), Oca (Oxalis tuberosa Molina) and Papalisa (Ullucus tuberosus Caldas). Starch Staerke 2016, 68, 1084–1094. [Google Scholar] [CrossRef]
- Asp, N.G.; Björck, I. Resistant starch. Trends Food Sci. Technol. 1992, 3, 111–114. [Google Scholar] [CrossRef]
- Baldwin, P.M. Starch granule-associated proteins and polypeptides: A review. Starch Staerke 2001, 53, 475–503. [Google Scholar] [CrossRef]
- Salcedo, M.J.; García, M.C.; Salcedo, H.D. Propiedades funcionales de almidones de ñame (Dioscorea alata). Biotecnol. Sect. Agropecu Agroindustrial. 2018, 16, 99–107. [Google Scholar] [CrossRef]
- Herminia, M.; Beraldo, A.L.; Costa, M.S.; Boas, F.V.; Franco, C.L.; Clerici, M.T. Bambusa vulgaris starch: Characterization and technological properties. Food Res. Int. 2020, 132, 1–8. [Google Scholar] [CrossRef]
- Gao, J.; Vasanthan, T.; Hoover, R. Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chem. 2009, 86, 157–163. [Google Scholar] [CrossRef]
- Kyung, J.S.; Yoo, B. Rheological properties of azuki bean starch pastes in steady and dynamic shear. Starch Starke 2014, 66, 802–808. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook, 4th ed.; Vincentz Network GmbH and Co.: Hannover, Germany, 2009; 434p. [Google Scholar]
- Lagarrigue, S.; Alvarez, G. The rheology of starch dispersions at high temperatures and high shear rates: A review. J. Food Eng. 2001, 50, 189–202. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, C.; Yoo, B. Steady and dynamic shear rheology of rice starch-galactomannan mixtures. Starch Starke 2005, 57, 310–318. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology: Principles, Measurements and Applications; Wiley-VCH: New York, NY, USA, 1994; 578p. [Google Scholar]
- Barbosa-Cánovas, G.V.; Kokini, J.L.; Ma, L.; Ibarz, A. The Rheology of Semiliquid Foods. Adv. Food Nutr. Res. 1996, 39, 1–69. [Google Scholar] [CrossRef] [PubMed]
- Ayala, G.; Agudelo, A.C.; Vargas, R.A. Comparative study and characterization of starches isolated from unconventional tuber sources. J. Polym. Eng. 2012, 32, 531–537. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenewoud, W.M. Diferential Scanning Calorimetry. In Characterisation of Polymers by Thermal Analysis, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2001; 396p. [Google Scholar] [CrossRef]
- Xie, X.; Cui, S.W.; Li, W.; Tsao, R. Isolation and characterization of wheat bran starch. Food Res. Int. 2008, 41, 882–887. [Google Scholar] [CrossRef]
- Kumar, R.; Khatkar, B.S. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Hernández-Medina, M.; Torruco-Uco, J.G.; Chel-Guerrero, L.; Betancur-Ancona, D. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Cienc. Tecnol. Aliment. 2008, 28, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.J.; Lin, J.H.; Chen, J.C.; Chang, Y.H. Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch. J. Agric. Food Chem. 2008, 56, 2208–2215. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, L.; Singh, J.; McCarthy, O.J.; Singh, H. Physico-chemical, rheological and structural properties of fractionated potato starches. J. Food Eng. 2007, 82, 383–394. [Google Scholar] [CrossRef]
- Olkku, J.; Rha, C. Gelatinisation of starch and wheat flour starch—A review. Food Chem. 1978, 3, 293–317. [Google Scholar] [CrossRef]
- Sharma, R.; Oberoi, D.P.S.; Sogi, D.S.; Gill, B.S. Effect of sugar and gums on the pasting properties of Cassava Starch. J. Food Process. Preserv. 2009, 33, 401–414. [Google Scholar] [CrossRef]
- Rached, L.B.; De Vizcarrondo, C.A.; Rincón, A.M.; Padilla, F. Evaluación de harinas y almidones de mapuey (Dioscorea trifida) variedades blanco y morado. Arch. Latinoam. Nutr. 2006, 56, 375–383. Available online: https://www.alanrevista.org/ediciones/2006/4/art-10/# (accessed on 11 June 2020).
- Karim, A.A.; Norziah, M.H.; Seow, C.C. Methods for the study of starch retrogradation. Food Chem. 2000, 71, 9–36. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Radosavljevic, M.; Lee, V.; Wong, K.S.; Jane, J. Effects of starch chemical structures on gelatinization and pasting properties. Żywność Technol. Jakość Supl. 1998, 4, 63–71. Available online: http://journal.pttz.org/wp-content/uploads/2018/01/05_Chen.pdf (accessed on 11 June 2020).
- Zobel, H.F. Starch Crystal Transformations and Their Industrial Importance. Starch Starke 1988, 40, 1–7. [Google Scholar] [CrossRef]
- Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat varieties. Molecules 2011, 16, 10570–10591. [Google Scholar] [CrossRef] [Green Version]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Rivas-González, M.; Méndez-Montealvo, M.G.C.; Sánchez-Rivera, M.M.; Núñez-Santiago, M.C.; Bello-Pérez, L.A. Caracterización morfológica, molecular y fisicoquímica del almidón de plátano oxidado y lintnerizado. Agrociencia 2008, 42, 487–497. Available online: http://www.redalyc.org/articulo.oa?id=30211234001 (accessed on 6 June 2020).
- Hizukuri, S. Relationship between the distribution of the chain length of amylopectin starch granules. Carbohydr. Res. 1985, 141, 295–306. [Google Scholar] [CrossRef]
- Flores-Morales, A.; Jiménez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012, 87, 61–68. [Google Scholar] [CrossRef]
- Martínez, P.; Peña, F.; Bello-Pérez, L.A.; Núñez-Santiago, C.; Yee-Madeira, H.; Velezmoro, C. Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chem. X 2019, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cisek, R.; Tokarz, D.; Kontenis, L.; Barzda, V.; Steup, M. Polarimetric second harmonic generation microscopy: An analytical tool for starch bioengineering. Starch Starke 2018, 70. [Google Scholar] [CrossRef]
- Valencia, T.; Victoria, M. Desarrollo de una Metodología Sostenible de Síntesis de Almidones Acetilados. Master’s Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2015. Available online: http://digital.bl.fcen.uba.ar (accessed on 22 June 2020).
- Dankar, I.; Haddarah, A.; Omar, F.E.L.; Pujolà, M.; Sepulcre, F. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 2018, 260, 7–12. [Google Scholar] [CrossRef]
- Debet, M.R.; Gidley, M.J. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. J. Agric. Food Chem. 2007, 55, 4752–4760. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Pascoal, A.; Di-Medeiros, M.C.; Batista, K.; Leles, M.I.; Lião, L.; Fernandes, K. Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydr. Polym. 2013, 2, 1304–1310. [Google Scholar] [CrossRef]
- Lian, X.; Wang, C.; Zhang, K.; Li, L. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, 13C NMR and DSC. Int. J. Biol. Macromol. 2014, 64, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Bernardino-Nicanor, A.; Acosta-García, G.; Güemes-Vera, N.; Montañez-Soto, J.L.; de los Ángeles Vivar-Vera, M.; González-Cruz, L. Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J. Food Sci. Technol. 2017, 54, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Jane, J.-L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J.F. Anthology of Starch Granule Morphology by Scanning Electron Microscopy. Starch Starke 1994, 46, 121–129. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- AACC. Approved Methods of the American Association of Cereal Chemists; AACCI: Melbourne, Australia, 1988. [Google Scholar]
- AOAC. Official Methods of Analysis. Official Methods of Analysis; AOAC: Rockville, MD, USA, 1990; pp. 1–672. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Tarrega, A.; Ramírez-Sucre, M.O.; Vélez-Ruiz, J.F.; Costell, E. Effect of whey and pea protein blends on the rheological and sensory properties of protein-based systems flavoured with cocoa. J. Food Eng. 2012, 109, 467–474. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemist, 9th ed.; AACC: Washington, DC, USA, 2000. [Google Scholar]
Parameter | Mean Value ± SD | |
---|---|---|
Weight (kg) | 3.66 ± 1321 | |
Longitudinal diameter (cm) | 48.00 ± 14.49 | |
Transverse diameter (cm) | 42.50 ± 7.64 | |
Edible yield (%) | 82.20 ± 4.74 | |
Pulp color | L* | 70.85 ± 11.32 |
C* | 21.30 ± 5.58 | |
°h | 67.32 ± 8.03 | |
Peel color | L* | 33.85 ± 3.36 |
C* | 10.74 ± 1.56 | |
°h | 58.59 ± 2.93 |
Parameter | Mean Value ± SD |
---|---|
Hardness (N) | 249.08 ± 44.03 |
Fracturability (N) | 138.84 ± 32.57 |
Adhesiveness (N) | 0.022 ± 0.008 |
Springiness | 0.76 ± 0.02 |
Cohesiveness | 0.47 ± 0.08 |
Resilience | 0.25 ± 0.06 |
Parameter | Mean Value ± SD |
---|---|
Moisture * | 88.34 ± 0.35 |
Dry Matter | 11.66 ± 0.35 |
Ash | 9.27 ± 0.77 |
Protein | 3.64 ± 0.10 |
Fat | 3.18 ± 0.25 |
Crude fiber | 15.61 ± 0.44 |
Carbohydrate | 68.27 ± 3.00 |
Properties (Wet Sample) | Pulp | Peel |
---|---|---|
Total soluble phenols (mg GAE/g EE) | 44.21 ± 3.48 b | 377.99 ± 13.77 a |
Total soluble flavonoids (mg CE/g EE) | 17.84 ± 1.87 b | 134.00 ± 4.47 a |
EC50 radical DPPH (µg/mL) | 12.70 ± 0.13 a | 1.22 ± 0.13 b |
EC50 radical ABTS (µg/mL) | 2.47 ± 0.17 a | 0.17 ± 0.04 b |
Parameter | Mean Value ± SD |
---|---|
L* | 91.28 ± 0.43 |
a* | −0.06 ± 0.03 |
b* | 2.45 ± 0.29 |
Extraction yield (% w/w) | 23.86 ± 0.40 |
Parameter | Mean Value ± SD |
---|---|
Moisture * | 10.43 ± 0.18 |
Ash | 0.28 ± 0.01 |
Protein | 1.07 ± 0.11 |
Fat | 0.37 ± 0.04 |
Purity | 98.28 ± 0.10 |
Starch Concentration (%) | G′ (Pa) | G″ (Pa) | η* (Pa·s) | Tan(δ) |
---|---|---|---|---|
CAP 5 | 44.64 c | 0.34 c | 7.08 c | 0.13 a |
CAP 10 | 219.34 b | 27.18 b | 35.03 b | 0.12 a |
CAP 15 | 207.13 b | 32.03 b | 43.70 b | 0.16 a |
Corn 10 (control) | 1503.98 a | 70.72 a | 238.67 a | 0.03 b |
Starch Concentration (%) | K (Pa·s) | n (Adimensional) | R2 |
---|---|---|---|
CAP 5 | 0.004 c | 1.273 a | 1.00 a |
CAP 10 | 33.799 b | 0.300 b | 0.99 a |
CAP 15 | 21.628 b | 0.380 b | 0.99 a |
Corn 10 (control) | 122.771 a | 0.158 b | 0.97 b |
Thermal Characteristics | Pasting Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | To (°C) | Tp (°C) | Tc (°C) | ΔH (J·g−1) | Pv (cP) | Tv (cP) | Fv (cP) | Ptemp (°C) | Breakdown (cP) | Setback (cP) |
Results | 75.12 | 79.41 | 84.41 | 16.82 | 1556 | 1029.5 | 1751.5 | 65.15 | 526.5 | 722 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suastegui-Baylón, L.; Salazar, R.; Maldonado-Astudillo, Y.I.; Ramírez-Sucre, M.O.; Arámbula-Villa, G.; Flores-Casamayor, V.; Jiménez-Hernández, J. Physical, Chemical and Rheological Characterization of Tuber and Starch from Ceiba aesculifolia subsp. parvifolia. Molecules 2021, 26, 2097. https://doi.org/10.3390/molecules26072097
Suastegui-Baylón L, Salazar R, Maldonado-Astudillo YI, Ramírez-Sucre MO, Arámbula-Villa G, Flores-Casamayor V, Jiménez-Hernández J. Physical, Chemical and Rheological Characterization of Tuber and Starch from Ceiba aesculifolia subsp. parvifolia. Molecules. 2021; 26(7):2097. https://doi.org/10.3390/molecules26072097
Chicago/Turabian StyleSuastegui-Baylón, Lizette, Ricardo Salazar, Yanik I. Maldonado-Astudillo, Manuel O. Ramírez-Sucre, Gerónimo Arámbula-Villa, Verónica Flores-Casamayor, and Javier Jiménez-Hernández. 2021. "Physical, Chemical and Rheological Characterization of Tuber and Starch from Ceiba aesculifolia subsp. parvifolia" Molecules 26, no. 7: 2097. https://doi.org/10.3390/molecules26072097
APA StyleSuastegui-Baylón, L., Salazar, R., Maldonado-Astudillo, Y. I., Ramírez-Sucre, M. O., Arámbula-Villa, G., Flores-Casamayor, V., & Jiménez-Hernández, J. (2021). Physical, Chemical and Rheological Characterization of Tuber and Starch from Ceiba aesculifolia subsp. parvifolia. Molecules, 26(7), 2097. https://doi.org/10.3390/molecules26072097