The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems
Abstract
:1. Introduction
2. Deep Eutectic Systems
3. Discussion
- Systems were selected as data points if the DES was a binary mixture;
- Ternary eutectic mixtures were only considered if the third component was water;
- If a DES was shown to be able to extract more than one compound from the same plant matrix, then a data point was considered for each compound extracted. For example, Viera et al. [57] reported, among others, a choline chloride:citric acid system (2:1) that was able to extract three types of flavonoids, querticin-3-O-glucoside, querticin-O-pentoside, and 3-O-caffeyolquinic acid, from walnuts and therefore three data points were considered;
- Data points were only selected if there data were reported on the yield of extraction using the DES and one of three conventional extraction solvents: water, ethanol, or methanol, which were used for comparison purposes.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. In Phenolic Compounds—Biological Activity; IntechOpen: London, UK, 2017. [Google Scholar]
- Vermerris, W.; Nicholson, R. Phenolic Compound Biochemistry, 1st ed.; Springer Science: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Giada, M.D.L.R. Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hättenschwiler, S.; Vitousek, P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 2000, 15, 238–243. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Cvejić, J.H.; Krstonošić, M.A.; Bursać, M.; Miljic, U. Polyphenols. In Nutraceutical and Functional Food Components; Academic Press: Cambridge, MA, USA, 2017; pp. 203–258. [Google Scholar]
- Hollman, P.C.H. Evidence for health benefits of plant phenols: Local or systemic effects? J. Sci. Food Agric. 2001, 81, 842–852. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef]
- Cherubim, D.J.D.L.; Martins, C.V.B.; Fariña, L.O.; Lucca, R.A.D.S.D. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.H.; Babic, G.; Durst, T.; Wright, J.S.; Flueraru, M.; Chichirau, A.; Chepelev, L.L. Development of Novel Antioxidants: Design, Synthesis, and Reactivity. J. Org. Chem. 2003, 68, 7023–7032. [Google Scholar] [CrossRef] [PubMed]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Radošević, K.; Ćurko, N.; Srček, V.G.; Bubalo, M.C.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Namieśnik, J. Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef]
- Bart, H.-J. Extraction of Natural Products from Plants—An Introduction. In Industrial Scale Natural Products Extraction (eds H.-J. Bart and S. Pilz). 2011. Available online: https://doi.org/10.1002/9783527635122.ch1 (accessed on 1 April 2021).
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Jahromi, S.G. Extraction Techniques of Phenolic Compounds from Plants. Plant Physiol. Asp. Phenolic Compd. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.-G.; Su, E. Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chem. 2018, 20, 1879–1886. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2014, 17, 1718–1727. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02009R1223-20201203 (accessed on 1 April 2021).
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic Liquids and Deep Eutectic Solvents in Natural Products Research: Mixtures of Solids as Extraction Solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Paiva, A.; Matias, A.A.; Duarte, A.R.C. How do we drive deep eutectic systems towards an industrial reality? Curr. Opin. Green Sustain. Chem. 2018, 11, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents. PLOS ONE 2015, 10, e0117934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayyan, M.; Hashim, M.A.; Al-Saadi, M.A.; Hayyan, A.; Alnashef, I.M.; Mirghani, M.E. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 2013, 93, 455–459. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Fernández, M.D.L.; Ángeles; Boiteux, J.; Espino, M.; Gomez, F.J.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Aroso, I.M.; Paiva, A.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. J. Mol. Liq. 2017, 241, 654–661. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Dugo, L.; Gentili, A.; Mondello, L.; De Gara, L. Choline-chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee ground. J. Pharm. Biomed. Anal. 2020, 189, 113421. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.M.A.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Raeissi, S.; Duarte, A.R.C. Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Sci. Rep. 2021, 11, 1–19. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Taherzadeh, M.; Duarte, A.R.C.; Raeissi, S. A general model for the surface tensions of deep eutectic solvents. J. Mol. Liq. 2020, 307, 112972. [Google Scholar] [CrossRef]
- Bakhtyari, A.; Haghbakhsh, R.; Duarte, A.R.C.; Raeissi, S. A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilibria 2020, 521, 112662. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Haghbakhsh, R.; Duarte, A.R.C.; Raeissi, S. Estimation of the heat capacities of deep eutectic solvents. J. Mol. Liq. 2020, 307, 112940. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- González, C.G.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour Fragr. J. 2017, 33, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of type III Deep Eutectic Solvents and effect of water on their intermolecular interactions. Fluid Phase Equilibria 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem. Int. Ed. 2017, 56, 9782–9785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansur, A.R.; Song, N.-E.; Jang, H.W.; Lim, T.-G.; Yoo, M.; Nam, T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Abbott, A.P.; Alabdullah, S.S.M.; Al-Murshedi, A.Y.M.; Ryder, K.S. Brønsted acidity in deep eutectic solvents and ionic liquids. Faraday Discuss. 2017, 206, 365–377. [Google Scholar] [CrossRef]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef]
- Barbieri, J.B.; Goltz, C.; Cavalheiro, F.B.; Toci, A.T.; Igarashi-Mafra, L.; Mafra, M.R. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crop. Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, O. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crop. Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Haghbakhsh, R.; Bardool, R.; Bakhtyari, A.; Duarte, A.R.C.; Raeissi, S. Simple and global correlation for the densities of deep eutectic solvents. J. Mol. Liq. 2019, 296, 111830. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. [Google Scholar] [CrossRef]
- Zeng, J.; Dou, Y.; Yan, N.; Li, N.; Zhang, H.; Tan, J.-N. Optimizing Ultrasound-Assisted Deep Eutectic Solvent Extraction of Bioactive Compounds from Chinese Wild Rice. Molecules 2019, 24, 2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Liu, J.-Z.; Wang, L.-T.; Kang, Y.-F.; Meng, Y.; Jiao, J.; Fu, Y.-J. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Saha, S.K.; Dey, S.; Chakraborty, R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos. J. Mol. Liq. 2019, 287, 110956. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Redovniković, I.R. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Wang, X.; Jia, W.; Lai, G.; Wang, L.; del Mar Contreras, M.; Yang, D. Extraction for profiling free and bound phenolic compounds in tea seed oil by deep eutectic solvents. J. Food Sci. 2020, 85, 1450–1461. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Peng, X.; Duan, M.-H.; Yao, X.-H.; Zhang, Y.-H.; Zhao, C.-J.; Zu, Y.-G.; Fu, Y.-J. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep. Purif. Technol. 2016, 157, 249–257. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Pimentel-Mora, S.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Res. Int. 2020, 137, 109646. [Google Scholar] [CrossRef]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Zakry, F.A.A.; Lan, J.C.-W.; Ling, T.C. Overview of citric acid production fromAspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Krisanti, E.A.; Saputra, K.; Arif, M.M.; Mulia, K. Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds. Proc. 5TH Int. Symp. Appl. Chem. 2019 2019, 2175, 020040. [Google Scholar] [CrossRef]
- Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, C.; Zhang, C.; Xue, Z.; Zheng, Y.; Guo, L. Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents. Molecules 2019, 24, 2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, B.; Yan, D.; Bai, Y.; Xie, J.; Cao, Y.; Liao, D.; Lin, L. Determination of phenolic acids in Prunella vulgaris L.: A safe and green extraction method using alcohol-based deep eutectic solvents. Anal. Methods 2015, 7, 9354–9364. [Google Scholar] [CrossRef]
- Razboršek, M.I.; Ivanović, M.; Krajnc, P.; Kolar, M. Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpa). Molecules 2020, 25, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Chen, X.; Zhao, D.; Li, H.; Zhang, Y.; Xiao, X. Estimation of pKa values for carboxylic acids, alcohols, phenols and amines using changes in the relative Gibbs free energy. Fluid Phase Equilibria 2012, 313, 148–155. [Google Scholar] [CrossRef]
- Salehi, H.S.; Ramdin, M.; Moultos, O.A.; Vlugt, T.J. Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. Fluid Phase Equilibria 2019, 497, 10–18. [Google Scholar] [CrossRef]
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Water EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Virgin Olive Oil | H/S | Apigenin | 1,4-Butanediol; Glycerol; Xylitol; 1,2-Propanediol; | 40; 40; 43.33; 50.00; | Garcia et al. [16] |
Luteolin | 1,4-Butanediol; Glycerol; Xylitol; 1,2-Propanediol; | 8.50; 8.50; 9.25; 10.13; | |||
Lycium barbarum | UAE | Myricetin | Ethylene Glycol; 1,2-Propanediol; Glycerol; | 1.00; 1.25; 1.25; | Ali et al. [59] |
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Glycerol; 1,4-Butanediol; 1,2-Propanediol; Ethylene Glycol; Triethylene Glycol; | 0.68; 0.82; 0.86; 0.97; 1.46; | Mansur et al. [53] |
Lycium barbarum; Buckwheat sprouts | UAE | Rutin | Xylitol; Glycerol; Glycerol; 1,2-Propanediol; Ethylene Glycol; Ethylene Glycol; 1,4-Butanediol; 1,2-Propanediol; Triethylene Glycol; | 0.50; 0.75; 0.80; 1.00; 1.00; 1.09; 1.13; 1.24; 1.48; | Ali et al. [59]; Mansur et al. [53] |
Platycladi Cacumen | UAE | Myricitrin | Ethylene Glycol a; Ethylene Glycol a; | 1.42; 1.43; | Zhuang et al. [60] |
Lycium barbarum | UAE | Morin | Glycerol; 1,2-Propanediol; Xylitol; Ethylene Glycol; | 0.73; 1.09; 1.23; 2.73; | Ali et al. [59] |
Buckwheat Sprouts | UAE | Vitexin | Glycerol; 1,2-Propanediol; Ethylene Glycol; 1,4-Butanediol; Triethylene Glycol; | 0.83; 0.97; 1.13; 1.24; 1.76; | Mansur et al. [53] |
Orientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; Ethylene Glycol; Triethylene Glycol; | 0.64; 0.74; 0.87; 1.04; 1.44; | |||
Platycladi cacumen | UAE | Quercitrin | Ethylene Glycol a; Ethylene Glycol a; | 1.51; 154 | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Isovitexin | Glycerol; 1,2-Propanediol; Ethylene Glycol; Urea; 1,4-Butanediol; Triethylene Glycol; | 1; 1.17; 1.34; 1.48; 1.45; 1.95; | Mansur et al. [53]. |
Isoorientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; Ethylene Glycol; Triethylene Glycol; | 0.89; 0.90; 1.12; 1.22; 1.69; | |||
Nobis tangerine | UAE | Hespiridin | Xylitol; Malic Acid; Maltose; 1,2-Propanediol; Glycerol; Propanedioic Acid; Sorbitol; Levulinic Acid; Oxalic Acid; Lactic Acid; Ethylene Glycol; | 5.10; 5.25; 5.35; 5.55; 5.60; 6.15; | Xu et al. [21] |
Wild Rice Powder | UAE | Procyanidin B1 | Glycerol; 1,4-Butanediol; | 1.56; 1.33; | Zeng et al. [61] |
Spent Coffee | UAE | Total Flavonoids | Sorbitol; Glycerol; Ethylene Glycol; 1,4-Butanediol; 1,6-Hexanediol; | 0.42; 0.96; 1.15; 1.42; 1.58; | Yoo et al. [14] |
Wild Rice Powder | UAE | Quercetin | Glycerol; 1,4-Butanediol; | 1.15; 1.34; | Zeng et al. [61] |
Camelia sinesis | UAE | Epigallocatechin gallate | Maltose; Sorbitol; Xylitol; Maltitol; | 2.41; 2.85; 2.89; 2.9; | Jeong et al. [22] |
Amide-based systems | |||||
Camelia sinesis | UAE | Epigallocatechin gallate | Urea | 1.49 | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Urea; Methyl urea; Acetamide; | 5.10; 6.20; 6.39; | Xu et al. [21] |
Buckwheat Sprouts | UAE | Isoorientin | Urea; Acetamide; | 1.29; 1.57; | Mansur et al. [53] |
Isovitexin | Urea; Acetamide; | 1.48; 1.83; | |||
Lycium barbarum | UAE | Morin | Urea | 1.09 | Ali et al. [59] |
Myricetin | Urea | 2.00 | |||
Platycladi Cacumen | UAE | Myricitrin | Methyl urea; Dimethylurea; | 1.29; 1.32; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Orientin | Urea; Acetamide; | 1.09; 1.22; | Mansur et al. [53] |
Wild Rice Powder | UAE | Procyanidin B1 | Urea | 0.93 | Zeng et al. [61] |
Quercetin | Urea | 1.00 | |||
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Acetamide; Urea; | 1.09; 1.08; | Mansur et al. [53] |
Platycladi cacumen | UAE | Quercitrin | Dimethylurea; Methyl urea; | 1.44; 1.50; | Zhuang et al. [60] |
Lycium barbarum; Buckwheat Sprouts | UAE | Rutin | Urea; Urea; Acetamide; | 1.00; 1.23; 1.24; | Ali et al. [59]; Mansur et al. [53] |
Spent Coffee | UAE | Total Flavonoids | Urea; Acetamide; | 0.81; 1.11; | Yoo et al. [14] |
Buckwheat Sprouts | UAE | Vitexin | Urea; Acetamide; | 1.26; 1.54; | Mansur et al. [53] |
Amino-acid-based systems | |||||
Camelia sinesis | UAE | Epigallocatechin gallate | Glycine | 3.10 | Jeong et al. [22] |
Olive Pomace | HAE | Luteolin | Glycine | 11.00 | Chanioti et al. [15] |
Rutin | Glycine | 8.80 | |||
Organic-acid-based systems | |||||
Virgin Olive Oil | H/S | Apigenin | Lactic Acid a; Propanedioic Acid a; | 30.33; 34.33; | Garcia et al. [16] |
Camelia sinesis | UAE | Epigallocatechin gallate | Citric Acid | 2.79 | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Tartaric Acid; Citric Acid; Malic Acid; Propanedioic Acid; Levulinic Acid; Oxalic Acid; Lactic Acid; | 4.35; 4.85; 5.15; 5.55; 5.75; 5.75; 5.8; | Xu et al. [21] |
Buckwheat Sprouts | UAE | Isoorientin | Oxalic Acid; Propanedioic Acid; | 0.92; 1.31; | Mansur et al. [53] |
Isovitexin | Oxalic Acid; Propanedioic Acid; | 1.06; 1.44; | |||
Virgin Olive Oil; Olive Pomace | H/S; HAE | Luteolin | Lactic Acid; Propanedioic Acid; Citric Acid; | 6.88; 7.50; 12.00; | Garcia et al. [16]; Chanioti et al. [15]; |
Lycium barbarum | UAE | Morin | Propanedioic Acid; Levulinic Acid; Oxalic Acid; Malic Acid; p-Toluenesulfonic Acid; | 1.86; 3.27; 3.55; 3.59; 5.77; | Ali et al. [59] |
Myricetin | Oxalic Acid; Malic Acid; Propanedioic Acid; Levulinic Acid; p-Toluenesulfonic Acid; | 2.25; 2.50; 3.50; 20.00; 143.00; | |||
Platycladi cacumen | UAE | Myricitrin | Levulinic Acid a; Levulinic Acid a; | 1.42; 1.51; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Orientin | Oxalic Acid; Propanedioic Acid; | 0.82; 1.09; | Mansur et al. [53] |
Wild Rice Powder | UAE | Procyanidin B1 | Malic Acid; Lactic Acid; | 1.18; 1.35; | Zeng et al. [61] |
Quercetin | Lactic Acid | 1.01 | |||
Juglans regia L. | H/S | Quercetin-3-O-glucoside | 3-Phenylpropionic Acid; 5-Phenylvaleric Acid; Citric Acid; 4-Phenylbutyric Acid; Malic Acid; Glutaric Acid; Lactic Acid; Glycolic Acid; Propanedioic Acid; Valeric Acid; Acetic Acid; Propionic Acid; Butyric Acid; Phenylacetic Acid; 3-Phenylpropionic Acid; | 4.85; 5.00; 5.00; 6.38; 6.62; 7.46; 7.62; 7.77; 8.08; 8.46; 10.08; 10.62; 11.08; 11.31; 11.85; | Vieira et al. [57] |
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Oxalic Acid; Propanedioic Acid; | 0.41; 1.00; | Mansur et al. [53] |
Juglans regia L. | H/S | Quercetin-O-pentoside | Citric Acid; 5-Phenylvaleric Acid; Propanedioic Acid; 3-Phenylpropionic Acid; Malic Acid; Glycolic Acid; 4-Phenylbutyric Acid; Lactic Acid; Glutaric Acid; Valeric Acid; Acetic Acid; Phenylacetic Acid; Propionic Acid; Butyric Acid; 3-Phenylpropionic Acid; | 1.95; 2.48; 2.52; 2.62; 2.67; 3; 3.19; 3.24; 3.33; 4.52; 4.9; 5.52; 5.57; 5.71; 6.38; | Vieira et al. [57] |
Platycladi cacumen | UAE | Quercitrin | Levulinic Acid; Levulinic Acid; | 1.51; 1.60; | Zhuang et al. [60] |
Lycium barbarum; Buckwheat Sprouts; Olive Pomace; | UAE; HAE | Rutin | Oxalic Acid; Oxalic Acid; Levulinic Acid; Propanedioic Acid; Malic Acid; Propanedioic Acid; p-Toluenesulfonic Acid; Citric Acid; | 0.70; 0.72; 1.10; 1.15; 1.50; 1.80; 9.10; 17.10; | Ali et al. [59] |
Spent Coffee; Fennel; Mint; Dittany; Marjoram; Sage; | UAE | Total Flavonoids | Lactic Acid c; Lactic Acid c; Lactic Acid c; Lactic Acid c; Citric Acid; Propanedioic Acid; Lactic Acid c; | 0.63; 0.79; 0.89; 0.90; 1.36; 1.36; 1.85; | Bakirtzi et al. [62]; Yoo et al. [14].; |
Buckwheat Sprouts | UAE | Vitexin | Oxalic Acid; Propanedioic Acid; | 0.91; 1.22; | Mansur et al. [53] |
Sugar-based systems | |||||
Virgin Olive Oil | H/S | Apigenin | Sucrose b; Sucrose b; | 19.33; 30.00; | Garcia et al. [16] |
Luteolin | Sucrose a; Sucrose a; | 6.75; 8.13; | |||
Platycladi cacumen | UAE | Myricitrin | Glucose a; Glucose a; | 1.08; 1.21; | Zhuang et al. [60]. |
Quercitrin | Glucose a; Glucose a; | 1.09; 1.24; | |||
Nobis tangerine | UAE | Hespiridin | Glucose; Fructose; | 4.70; 4.90; | Xu et al. [21] |
Wild Rice Powder | UAE | Procyanidin B1 | Fructose; Glucose; | 1.11; 1.71; | Zeng et al. [61] |
Spent Coffee | UAE | Total Flavonoids | Fructose; Glucose; Xylose; Sucrose; | 0.51; 0.58; 0.61; 0.64; | Yoo et al. [14] |
Wild Rice Powder | UAE | Quercetin | Fructose; Glucose; | 1.01; 1.01; | Zeng et al. [61] |
Camelia sinesis | UAE | Epigallocatechin gallate | Sucrose; Glucose; | 2.66; 2.95; | Jeong et al. [22] |
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Ethanol EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Wild Rice Powder | UAE | Catechin | Glycerol; 1,4-Butanediol; | 1.22; 2.23; | Zeng et al. [61] |
Hibiscus sabdariffa L. | MAE | Cyanidin-3-sambubioside | Maltose; Ethylene Glycol; 1,2-Propanediol; | 0.78; 0.83; 0.95; | Alañón et al. [63] |
Delphinidin-3-sambubioside | Maltose; Ethylene Glycol; 1,2-Propanediol; | 0.79; 0.81; 0.94; | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Maltose; Sorbitol; Xylitol; Maltitol; | 0.81; 0.96; 0.97; 0.98; | Jeong et al. [25] |
Nobis tangerine | UAE | Hespiridin | Xylitol; Maltose; 1,2-Propanediol; Glycerol; Sorbitol; Ethylene Glycol; | 1.2; 1.23; 1.25; 1.3; 1.31; 1.44; | Xu et al. [21] |
Buckwheat Sprouts | UAE | Isoorientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; Ethylene Glycol; Triethylene Glycol; | 0.50; 0.51; 0.63; 0.69; 0.95; | Mansur et al. [53] |
Sea Buckthorn Leaves | MAE | Isoquercetin | 1,4-Butanediol | 2.08 | Cui et al. [64] |
Isorhamnetin | 1,4-Butanediol | 2.47 | |||
Buckwheat Sprouts | UAE | Isovitexin | Glycerol; 1,2-Propanediol; Ethylene Glycol; 1,4-Butanediol; Triethylene Glycol; | 0.51; 0.60; 0.68; 0.74; 0.99; | Mansur et al. [53] |
Hibiscus sabdariffa L.; Sea Buckthorn Leaves | MAE | Kaempferol | Maltose; Ethylene Glycol; 1,2-Propanediol; 1,4-Butanediol; | 0.91; 1.09; 1.18; 1.70 | Alañón et al. [63]; Cui et al. [64] |
Hibiscus sabdariffa L. | MAE | Kaempferol-3-O-sambubioside | 1,2-Propanediol; Maltose; Ethylene Glycol; | 0.40; 0.60; 0.80; | Alañón et al. [63] |
Methylepigallocatechin | Maltose; Ethylene Glycol; 1,2-Propanediol; | 0.91; 1.00; 1.18; | |||
Lycium barbarum | UAE | Morin | Glycerol; 1,2-Propanediol; Xylitol; Ethylene Glycol; | 0.80; 1.2; 1.35; 3; | Ali et al. [59] |
Lycium barbarum; Hibiscus sabdariffa L.; | UAE; MAE | Myricetin | Ethylene Glycol c; Maltose; 1,2-Propanediol; Glycerol; Ethylene Glycol c; 1,2-Propanediol; | 0.80; 0.85; 1; 1; 1; 1.03; | Ali et al. [59]; Alañón et al. [63]; |
Hibiscus sabdariffa L. | MAE | Myricetin-3-arabinogalactoside | Maltose; Ethylene Glycol; 1,2-Propanediol; | 0.93; 0.98; 1.05; | Alañón et al. [63] |
Buckwheat Sprouts | UAE | Orientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; | 0.44; 0.50; 0.6; | Mansur et al. [53] |
Wild Rice Powder | UAE | Procyanidin B1 | 1,4-Butanediol; Glycerol; | 0.84; 0.98; | Zeng et al. [61] |
Hibiscus sabdariffa L.; Wild Rice Powder; Sea Buckthorn Leaves; | MAE; UAE | Quercetin | Maltose; Ethylene Glycol; 1,2-Propanediol; Glycerol; 1,4-Butanediol c; 1,4-Butanediol c; | 0.81; 0.96; 1.09; 1.25; 1.46; 3.07; | Alañón et al. [63]; Zeng et al. [61]; Cui et al. [64]; |
Hibiscus sabdariffa L. | MAE | Quercetin-3-glucoside | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.82; 0.96; 1.00; | Alañón et al. [63] |
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Glycerol; 1,4-Butanediol; 1,2-Propanediol; Ethylene Glycol; Triethylene Glycol; | 0.51; 0.62; 0.65; 0.73; 1.09; | Mansur et al. |
Hibiscus sabdariffa L. | MAE | Quercetin-3-rutinoside | Ethylene Glycol; 1,2-Propanediol; Maltose; | 0.94; 0.99; 0.71; | Alañón et al. [63] |
Quercetin-3-sambubioside | Maltose; Ethylene Glycol; 1,2-Propanediol; | 0.64; 0.85; 0.85; | |||
Buckwheat Sprouts; Lycium barbarum; Sea Buckthorn Leaves; | UAE; MAE | Rutin | Glycerol b,c; Xylitol; Ethylene Glycol c; 1,4-Butanediol; 1,2-Propanediol; Triethylene Glycol; Glycerol b,c; 1,2-Propanediol; Ethylene Glycol c; 1,4-Butanediol; | 0.49; 0.71; 0.71; 0.73; 0.80; 0.96; 1.14; 1.43; 1.43; 2.05; | Mansur et al. [53]; Ali et al. [59]; Cui et al. [64]; |
Spent Coffee | UAE | Total Flavonoids | Sorbitol; Glycerol; Ethylene Glycol; 1,4-Butanediol; 1,6-Hexanediol; | 0.34; 0.76; 0.92; 1.14; 1.26; | Yoo et al. [14] |
Buckwheat Sprouts | UAE | Vitexin | Glycerol; 1,2-Propanediol; Ethylene Glycol; 1,4-Butanediol; Triethylene Glycol; | 0.49; 0.57; 0.67; 0.73; 1.03; | Mansur et al. [53] |
Amide-based systems | |||||
Hibiscus sabdariffa L. | MAE | Cyanidin-3-sambubioside | Urea | 0.28 | Alañón et al. [63] |
Delphinidin-3-sambubioside | Urea | 0.38 | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Urea; Urea; | 0.50; 1.04; | Jeong et al. [25] |
Nobis tangerine | UAE | Hespiridin | Urea; Methyl urea; Acetamide; | 1.20; 1.45; 1.50; | Xu et al. [21] |
Buckwheat Sprouts | UAE | Isoorientin | Urea; Acetamide; | 0.73; 0.89; | Mansur et al. [53] |
Isovitexin | Urea; Acetamide; | 0.75; 0.93; | |||
Hibiscus sabdariffa L. | MAE | Kaempferol | Urea | 0.73 | Alañón et al. [63] |
Kaempferol-3-O-sambubioside | Urea | 1.20 | |||
Methylepigallocatechin | Urea | 1.09 | |||
Lycium barbarum | UAE | Morin | Urea | 1.20 | Ali et al. [59] |
Hibiscus sabdariffa L.; Lycium barbarum; | MAE | Myricetin | Urea c; Urea c; | 0.67; 1.6; | Alañón et al. [63]; Ali et al. [59]; |
Hibiscus sabdariffa L. | MAE | Myricetin-3-arabinogalactoside | Urea | 1.45 | Alañón et al. [63] |
Buckwheat Sprouts | UAE | Orientin | Urea; Acetamide; | 0.75; 0.84; | Mansur et al. [53] |
Wild Rice Powder | UAE | Procyanidin B1 | Urea | 0.59 | Zeng et al. [61] |
Hibiscus sabdariffa L.; Wild Rice Powder; | MAE | Quercetin | Urea; Urea; | 0.60; 1.09; | Alañón et al. [63]; Zeng et al. [61]; |
Hibiscus sabdariffa L. | MAE | Quercetin-3-glucoside | Urea | 0.87 | Alañón et al. [63] |
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Acetamide; Urea; | 0.82; 0.81; | Mansur et al. [53] |
Hibiscus sabdariffa L. | MAE | Quercetin-3-rutinoside | Urea | 0.83 | Alañón et al. [63] |
Quercetin-3-sambubioside | Urea | 0.90 | |||
Buckwheat Sprouts; Lycium barbarum; | UAE | Rutin | Urea; Acetamide; Urea; | 0.79; 0.80; 1.43; | Mansur et al. [53]; Ali et al. [59]; |
Spent Coffee | UAE | Total Flavonoids | Urea; Acetamide; | 0.65; 0.89; | Yoo et al. [14] |
Buckwheat Sprouts | UAE | Vitexin | Urea; Acetamide; | 0.74; 0.91; | Mansur et al. [53] |
Amino-acid-based systems | |||||
Camelia sinesis | UAE | Epigallocatechin gallate | Glycine | 1.04 | Jeong et al. [25] |
Olive Pomace | HAE | Luteolin | Glycine | 1.83 | Chanioti et al. [15] |
Rutin | Glycine | 2.44 | |||
Organic-acid-based systems | |||||
Aegle marmelos | UAE | Apigenin | Oxalic Acid; Oxalic Acid; Oxalic Acid; | 0.58; 1.58; 1.73; | Saha et al. [65] |
Wild Rice Powder | UAE | Catechin | Malic Acid; Lactic Acid; | 1.23; 1.52; | Zeng et al. [61] |
Grape Pomace | UMAE | cyanidin -3-(6-O-p- coumaroyl)monoglucosides | Citric Acid; Malic Acid; Malic Acid; Citric Acid; | 0.54; 0.67; 0.67; 0.85; | Panić et al. [66] |
Hibiscus sabdariffa L. | MAE | Cyanidin-3-sambubioside | Lactic Acid; Oxalic Acid; | 1.33; 2.08; | Alañón et al. [63] |
Grape Pomace | UMAE | delphinidin-3-O-monoglucoside | Citric Acid a; Malic Acid a; Malic Acid a; Citric Acid a; | 0.98; 1.19; 1.23; 1.48; | Panić et al. [66] |
Hibiscus sabdariffa L. | MAE | Delphinidin-3-sambubioside | Lactic Acid; Oxalic Acid; | 1.01; 1.13; | Alañón et al. [63] |
Camelia sinesis | UAE | Epigallocatechin gallate | Citric Acid | 0.94 | Jeong et al. [25] |
Nobis tangerine | UAE | Hespiridin | Tartaric Acid; Citric Acid; Malic Acid; Propanedioic Acid; Levulinic Acid; Oxalic Acid; Lactic Acid; | 1.02; 1.14; 1.21; 1.3; 1.35; 1.35; 1.36; | Xu et al. [21] |
Buckwheat Sprouts | UAE | Isoorientin | Oxalic Acid; Propanedioic Acid; | 0.52; 0.74; | Mansur et al. [53] |
Isovitexin | Oxalic Acid; Propanedioic Acid; | 0.54; 0.73; | |||
Aegle marmelos | UAE | Kaempferol | Oxalic Acid; Lactic Acid; Oxalic Acid; Oxalic Acid; Oxalic Acid; | 0.52; 1.09; 1.53; 1.65; 2.45; | Saha et al. [65] |
Hibiscus sabdariffa L. | MAE | Kaempferol-3-O-sambubioside | Lactic Acid; Oxalic Acid; | 0.60; 2.20; | Alañón et al. [63] |
Olive Pomace | HAE | Luteolin | Citric Acid | 2.00 | Chanioti et al. [15] |
Grape Pomace | UMAE | malvidin-3-(6-O-p-coumaroyl)monoglucosides | Citric Acid a; Malic Acid a; Malic Acid a; Citric Acid a; | 0.53; 0.54; 0.71; 0.87; | Panić et al. [66] |
malvidin-3-O-acetylmonoglucoside | Citric Acid a; Malic Acid a; Malic Acid a; Citric Acid a; | 0.63; 0.79; 0.89; 1.04; | |||
malvidin-3-O-monoglucoside | Citric Acid a; Malic Acid a; Malic Acid a; Citric Acid a; | 0.8; 0.84; 1.05; 1.26; | |||
Hibiscus sabdariffa L. | MAE | Methylepigallocatechin | Oxalic Acid; Lactic Acid; | 0.73; 1.00; | Alañón et al. [63] |
Lycium barbarum | UAE | Morin | Propanedioic Acid; Levulinic Acid; Oxalic Acid; Malic Acid; p-Toluenesulfonic Acid; | 2.05; 3.6; 3.9; 3.95; 6.35; | Ali et al. [59] |
Hibiscus sabdariffa L.; Lycium barbarum; | MAE; UAE | Myricetin | Lactic Acid; Oxalic Acid b,c; Oxalic Acid b,c; Malic Acid; Propanedioic Acid; Levulinic Acid; p-Toluenesulfonic Acid; | 1.10; 1.46; 1.8; 2; 2.8; 16; 114.4; | Alañón et al. [63]; Ali et al. [59]; |
Hibiscus sabdariffa L. | MAE | Myricetin-3-arabinogalactoside | Lactic Acid; Oxalic Acid; | 0.86; 2.62; | Alañón et al. [63] |
Buckwheat Sprouts | UAE | Orientin | Oxalic Acid; Propanedioic Acid; | 0.56; 0.75; | Mansur et al. [53] |
Grape Pomace | UMAE | peonidin-3-(6-O-p-coumaroyl)monoglucosides | Citric Acid a; Malic Acid a; Malic Aci ad; Citric Acid a; | 0.58; 0.72; 0.72; 0.91; | Panić et al. [66] |
peonidin-3-O-acetylmonoglucoside | Citric Acid a; Malic Acid a; Malic Aci ad; Citric Acid a; | 0.65; 0.79; 0.81; 0.99; | |||
peonidin-3-O-monoglucoside | Citric Acid a; Malic Acid a; Malic Aci ad; Citric Acid a; | 0.73; 0.85; 0.97; 1.06; | |||
petunidin-3-O-monoglucoside | Citric Acid a; Malic Acid a; Malic Aci ad; Citric Acid a; | 1; 1.21; 1.25; 1.51; | |||
Wild Rice Powder | UAE | Procyanidin B1 | Malic Acid; Lactic Acid; | 0.75; 0.85; | Zeng et al. [61] |
Hibiscus sabdariffa L.; Wild Rice Powder; | MAE; UAE | Quercetin | Lactic Acid c; Lactic Acid c; Oxalic Acid; | 1.03; 1.09; 1.89; | Alañón et al. [63]; Zeng et al. [61]; |
Hibiscus sabdariffa L. | MAE | Quercetin-3-glucoside | Oxalic Acid; Lactic Acid; | 0.55; 1.00; | Alañón et al. [63] |
Juglans regia L. | H/S | Quercetin-3-O-glucoside | 3-Phenylpropionic Acid; 5-Phenylvaleric Acid; Citric Acid; 4-Phenylbutyric Acid; Malic Acid; Glutaric Acid; Lactic Acid; Glycolic Acid; Propanedioic Acid; Valeric Acid; Acetic Acid; Propionic Acid; Butyric Acid; Phenylacetic Acid; 3-Phenylpropionic Acid; | 0.56; 0.58; 0.58; 0.73; 0.76; 0.86; 0.88; 0.89; 0.93; 0.97; 1.16; 1.22; 1.27; 1.30; 1.36; | Vieira et al. [57] |
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Oxalic Acid; Propanedioic Acid; | 0.30; 0.75; | Mansur et al. [53] |
Hibiscus sabdariffa L. | MAE | Quercetin-3-rutinoside | Oxalic Acid; Lactic Acid; | 0.23; 0.91; | Alañón et al. [63] |
Quercetin-3-sambubioside | Oxalic Acid; Lactic Acid; | 0.38; 0.71; | |||
Juglans regia L. | H/S | Quercetin-O-pentoside | Citric Acid; 5-Phenylvaleric Acid; Propanedioic Acid; 3-Phenylpropionic Acid; Malic Acid; Glycolic Acid; 4-Phenylbutyric Acid; Lactic Acid; Glutaric Acid; Valeric Acid; Acetic Acid; Phenylacetic Acid; Propionic Acid; Butyric Acid; 3-Phenylpropionic Acid; | 0.48; 0.6; 0.62; 0.64; 0.65; 0.73; 0.78; 0.79; 0.81; 1.10; 1.20; 1.35; 1.36; 1.40; 1.56; | Vieira et al. [57] |
Buckwheat Sprouts | UAE | Rutin | Oxalic Acidc; Propanedioic Acidc; Oxalic Acidc; Levulinic Acid; Malic Acid; Propanedioic Acidc; p-Toluenesulfonic Acid; | 0.51; 0.82; 0.88; 1.38; 1.88; 2.25; 11.38; | Mansur et al. [53] |
Spent Coffee; Fennel; Mint; Dittany; Marjoram; Sage; | UAE | Total Flavonoids | Lactic Acidc c; Lactic Acid c; Lactic Acid c; Lactic Acid; Citric Acid; Propanedioic Acid; Lactic Acid c; | 0.62; 0.66; 0.88; 0.88; 1.08; 1.09; 1.09; | Bakirtzi et al. [62]; Yoo et al. [14]; |
Buckwheat Sprouts | UAE | Vitexin | Oxalic Acid; Propanedioic Acid; | 0.54; 0.72; | Mansur et al. [53] |
Sugar-based systems | |||||
Wild Rice Powder | UAE | Catechin | Glucose; Fructose; | 0.97; 1.11; | Zeng et al. [61] |
Hibiscus sabdariffa L. | MAE | Cyanidin-3-sambubioside | Fructose; Glucose; | 0.82; 0.87; | Alañón et al. [63] |
Delphinidin-3-sambubioside | Fructose; Glucose; | 0.83; 0.86; | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Sucrose; Glucose; | 0.90; 0.99; | Jeong et al. [25] |
Nobis tangerine | UAE | Hespiridin | Glucose; Fructose; | 1.10; 1.15; | Xu et al. [21] |
Hibiscus sabdariffa L. | MAE | Kaempferol | Fructose; Glucose; | 0.91; 0.91; | Alañón et al. [63] |
Kaempferol-3-O-sambubioside | Fructose; Glucose; | 0.60; 0.80; | |||
Methylepigallocatechin | Glucose; Fructose; | 0.91; 1.00; | |||
Myricetin | Fructose; Glucose; | 0.89; 0.93; | |||
Myricetin-3-arabinogalactoside | Fructose; Glucose; | 0.90; 0.95; | |||
Neochlorogenic acid | Fructose; Glucose; | 0.83; 0.84; | |||
Wild Rice Powder | UAE | Procyanidin B1 | Fructose; Glucose; | 0.70; 1.08; | Zeng et al. [61] |
Hibiscus sabdariffa L.; Wild Rice Powder; | MAE | Quercetin | Glucose; Fructose; Fructose; Glucose; | 0.83; 0.85; 1.09; 1.10; | Alañón et al. [63]; Zeng et al. [61]; |
Hibiscus sabdariffa L. | MAE | Quercetin-3-glucoside | Fructose; Glucose; | 0.85; 0.89; | Alañón et al. [63] |
Quercetin-3-rutinoside | Fructose; Glucose; | 0.77; 0.80; | |||
Quercetin-3-sambubioside | Glucose; Fructose; | 0.69; 0.71; | |||
Spent Coffee | UAE | Total Flavonoids | Fructose; Glucose; Xylose; Sucrose; | 0.41; 0.47; 0.49; 0.51; | Yoo et al. [14] |
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Methanol EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Platycladi cacumen | UAE | Amentoflavone | Ethylene Glycol a; Ethylene Glycol a; | 1.04; 1.15; | Zhuang et al. [60] |
Camelia sinesis Seed Oil; Virgin Olive Oil; | H/S | Apigenin | Propilene Glycol; 1,4-Butanediol; Glycerol; Xylitol; Glycerol; Xylitol; 1,2-Propanediol; | 0.45; 0.92; 0.92; 0.93; 0.96; 1.00; 1.15; | Garcia et al. [16]; Wang et al. [67]; |
Camelia sinesis Seed Oil | H/S | Catechin | Glycerol; Propilene Glycol; Ethylene Glycol; Xylitol; Glycerol; | 0.06; 0.06; 0.12; 0.16; 1.00; | Wang et al. [67] |
Grape Skin | UAE | Cyanidin-3-O-monoglucoside | Glycerol | 0.67 | Radošević et al. [17] |
Grape Skin | UAE | Delphinidin-3-O-monoglucoside | Glycerol | 1.00 | Radošević et al. [17] |
Camelia sinesis Seed Oil | H/S | Epicatechin | Ethylene Glycol; Glycerol; Propilene Glycol; Xylitol; | 0.02; 0.03; 0.13; 0.61; | Wang et al. [67] |
Epicatechin gallate | Glycerol; Xylitol; Ethylene Glycol; Propilene Glycol; | 1.00; 1.00; 1.00; 1.00; | |||
Epigallocatechin | Ethylene Glycol; Propilene Glycol; Xylitol; | 1.01; 1.01; 1.02; | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Maltitol a; Xylitol a; Maltose a; Sorbitol a; Sorbitol a; Maltose a; Xylitol a; Sorbitol a; Xylitol a; Maltose a; Maltitol a; Maltitol a; | 0.73; 0.77; 0.77; 0.78; 0.78; 0.85; 0.91; 1.01; 1.02; 1.03; 1.03; 1.06; | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Xylitol; Maltose; 1,2-Propanediol; Glycerol; Sorbitol; Ethylene Glycol; | 0.95; 0.97; 0.99; 1.03; 1.04; 1.14; | Xu et al. [21] |
Platycladi cacumen | UAE | Hinokiflavone | Ethylene Glycol a; Ethylene Glycol a; | 0.59; 0.96; | Zhuang et al. [60]. |
Buckwheat Sprouts | UAE | Isoorientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; Ethylene Glycol; Triethylene Glycol; | 0.57; 0.58; 0.72; 0.78; 1.08; | Mansur et al. [53] |
Isovitexin | Glycerol; 1,2-Propanediol; Ethylene Glycol; 1,4-Butanediol; Triethylene Glycol; | 0.57; 0.66; 0.76; 0.82; 1.11; | |||
Camelia sinesis Seed Oil | H/S | Kaempferol | Propilene Glycol; Ethylene Glycol; Glycerol; | 0.49; 0.90; 1.12; | Wang et al. [67] |
Camelia sinesis Seed Oil; Lycium Barbarum; Virgin Olive Oil; | H/S; UAE; H/S; | Luteolin | Ethylene Glycol c; Propilene Glycol; Ethylene Glycol c; 1,4-Butanediol; Glycerol; Xylitol; 1,2-Propanediol c; Glycerol; 1,2-Propanediol c; | 0.43; 0.46; 0.49; 1.00; 1.00; 1.09; 1.19; 1.2; 1.49; | Wang et al. [67] Ali et al. [59]; Garcia et al. [16]; |
Grape Skin | UAE | Malvidin-3-(6-O-p-coumaroyl)monoglucoside | Glycerol | 1.60 | Radošević et al. [17] |
Malvidin-3-O-acetylmonoglucoside | Glycerol | 2.00 | |||
Malvidin-3-O-monoglucoside | Glycerol | 0.81 | |||
Lycium barbarum | UAE | Morin | Glycerol; 1,2-Propanediol; Xylitol; Ethylene Glycol; | 0.67; 1.00; 1.13; 2.50; | Ali et al. [59] |
Myricetin | Ethylene Glycol; 1,2-Propanediol; Glycerol; | 1.00; 1.25; 1.25; | |||
Platycladi cacumen | UAE | Myricitrin | Glycerol; Ethylene Glycol; Ethylene Glycol; | 1.28; 1.40; 1.41; | Zhuang et al. [60] |
Camelia sinesis Seed Oil | H/S | Naringenin | Ethylene Glycol; Glycerol; Propilene Glycol; Xylitol; | 0.37; 0.40; 0.48; 0.93; | Wang et al. [67] |
Flos Sophorae | UAE | Nicotiflorin | Xylitol | 0.91 | Nam et al. [25] |
Buckwheat Sprouts | UAE | Orientin | 1,2-Propanediol; Glycerol; 1,4-Butanediol; Ethylene Glycol; Triethylene Glycol; | 0.50; 0.58; 0.68; 0.81; 1.12; | Mansur et al. [53] |
Grape Skin | UAE | Peonidin-3-(6-O-p-coumaroyl)monoglucoside | Glycerol | 1.00 | Radošević et al. [17] |
Peonidin-3-O-monoglucoside | Glycerol | 1.17 | |||
Petunidin-3-O-monoglucoside | Glycerol | 1.00 | |||
Quercetin-3-O-glucoside | Glycerol | 1.00 | |||
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Glycerol; 1,4-Butanediol; 1,2-Propanediol; Ethylene Glycol; Triethylene Glycol; | 0.55; 0.67; 0.70; 0.79; 1.19; | Mansur et al. [53] |
Platycladi cacumen | UAE | Quercitrin | Glycerol; Ethylene Glycol b; Ethylene Glycol b; | 1.27; 1.38; 1.40; | Zhuang et al. [60] |
Quercitrin | Levulinic Acid | 1.45 | |||
Tartary buckwheat hull; Buckwheat Sprouts; Lycium barbarum; | UAE | Rutin | Sorbitol; Glycerol c; Xylitol c; Xylitol c; Ethylene Glycol c; 1,4-Butanediol; 1,2-Propanediol; Glycerol c; Triethylene Glycol; 1,2-Propanediol; Ethylene Glycol c; 1,2-Propanediol; Glycerol c; | 0.45; 0.53; 0.63; 0.66; 0.77; 0.8; 0.88; 1.00; 1.05; 1.25; 1.25; 1.48; 1.98; | Huang et al. [68]; Mansur et al. [53]; Ali et al. [59]; |
Camelia sinesis Seed Oil | H/S | Taxifolin | Ethylene Glycol; Xylitol; Glycerol; | 0.44; 2.39; 3.95; | Wang et al. [67] |
Spent Coffee; Lippia citriodora | UAE; MAE | Total Flavonoids | Sorbitol; Glycerol; Ethylene Glycol c; Xylitol; 1,3-Butanediol; Maltose; 1,4-Butanediol; 1,6-Hexanediol; 1,2-Propanediol; Ethylene Glycol c; | 0.34; 0.77; 0.93; 1.00; 1.02; 1.06; 1.14; 1.27; 1.38; 1.42; | Yoo et al. [14].; Ivanović et al. [63] |
Camelia sinesis Seed Oil; Buckwheat Sprouts | H/S; UAE | Vitexin | Glycerolc; Propilene Glycol; Glycerolc; Ethylene Glycolc; 1,2-Propanediol; Ethylene Glycolc; 1,4-Butanediol; Triethylene Glycol; Xylitol; | 0.41; 0.52; 0.56; 0.64; 0.66; 0.77; 0.84; 1.19; 1.52; | Wang et al. [67]; Mansur et al. [53] |
Amide-based systems | |||||
Platycladi cacumen | UAE | Amentoflavone | Methyl urea; Dimethylurea; | 0.92; 1.12; | Zhuang et al. [60] |
Camelia sinesis | UAE | Epigallocatechin gallate | Urea | 0.53 | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Urea; Methyl urea; Acetamide; | 0.95; 1.15; 1.19; | Xu et al. [21] |
Platycladi cacumen | UAE | Hinokiflavone | Methyl urea; Dimethylurea; | 0.47; 0.94; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Isoorientin | Urea; Acetamide; | 0.83; 1; | Mansur et al. [53] |
Isovitexin | Urea; Acetamide; | 0.84; 1.04; | |||
Lycium barbarum | UAE | Luteolin | Urea | 0.12 | Ali et al. [59] |
Morin | Urea | 1.00 | |||
Myricetin | Urea | 2.00 | |||
Platycladi cacumen | UAE | Myricitrin | Methyl urea; Dimethylurea; Acetamide; | 1.27; 1.31; 1.47; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Orientin | Urea; Acetamide; | 0.86; 0.96; | Mansur et al. [53] |
Quercetin-3-O-robinoside | Urea; Acetamide; | 0.88; 0.89; | |||
Platycladi cacumen | UAE | Quercitrin | Dimethylurea; Methyl urea; Acetamide; | 1.31; 1.36; 1.40; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Rutin | Urea; Acetamide; Urea; | 0.87; 0.88; 1.25; | Mansur et al. [53] |
Spent Coffee | UAE | Total Flavonoids | Urea; Acetamide; Urea; | 0.65; 0.89; 0.96; | Yoo et al. [14] |
Buckwheat Sprouts | UAE | Vitexin | Urea; Acetamide; | 0.85; 1.04; | Mansur et al. [53] |
Amino-acid-based systems | |||||
Camelia sinesis | UAE | Epigallocatechin gallate | Glycinea; Glycinea; | 1.03; 1.10; | Jeong et al. [22] |
Flos Sophorae | UAE | Narcissim | Glycine | 1.33 | Nam et al. [25] |
Nicotiflorin | Glycine | 1.09 | |||
Rutin | Glycine | 1.05 | |||
Organic-acid-based systems | |||||
Platycladi cacumen | UAE | Amentoflavone | Levulinic Acida; Levulinic Acida; | 1.28; 1.42; | Zhuang et al. [60]. |
Virgin Olive Oil | H/S | Apigenin | Lactic Acid; Propanedioic Acid; | 0.70; 0.79; | Garcia et al. [16] |
Camelia sinesis Seed Oil | H/S | Catechin | Propanedioic Acid; Malic Acid; | 0.04; 4.00; | Wang et al. [67] |
Grape Skin | UAE | Cyanidin-3-O-monoglucoside | Malic Acid | 1.00 | Radošević et al. [17] |
Delphinidin-3-O-monoglucoside | Malic Acid | 1.50 | |||
Camelia sinesis Seed Oil | H/S | Epicatechin | Propanedioic Acid | 0.13 | Wang et al. [67] |
Epicatechin gallate | Propanedioic Acid | 1.00 | |||
Epigallocatechin | Propanedioic Acid | 1.00 | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Citric Acid | 0.99 | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Tartaric Acid; Citric Acid; Malic Acid; Propanedioic Acid; Levulinic Acid; Oxalic Acid; Lactic Acid; | 0.81; 0.90; 0.95; 1.03; 1.07; 1.07; 1.07; | Xu et al. [21] |
Platycladi cacumen | UAE | Hinokiflavone | Levulinic Acid; Levulinic Acid; | 1.22; 1.50; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Isoorientin | Oxalic Acid; Propanedioic Acid; | 0.59; 0.83; | Mansur et al. [53] |
Isovitexin | Oxalic Acid; Propanedioic Acid; | 0.60; 0.82; | |||
Camelia sinesis Seed Oil | H/S | Kaempferol | Propanedioic Acid | 0.51 | Wang et al. [67] |
Lycium barbarum | UAE | Luteolin | Propanedioic Acid; Malic Acid; Oxalic Acid; Propanedioic Acid; p-Toluenesulfonic Acid; Lactic Acid; Propanedioic Acid; | 0.11; 0.19; 0.21; 0.47; 0.60; 0.81; 0.88; | Ali et al. [59] |
Grape Skin | UAE | Malvidin-3-(6-O-p-coumaroyl)monoglucoside | Malic Acid | 2.30 | Radošević et al. [17] |
Malvidin-3-O-acetylmonoglucoside | Malic Acid | 2.00 | |||
Malvidin-3-O-monoglucoside | Malic Acid | 1.48 | |||
Lycium barbarum | UAE | Morin | Propanedioic Acid; Levulinic Acid; Oxalic Acid; Malic Acid; p-Toluenesulfonic Acid; | 1.71; 3.00; 3.25; 3.29; 5.29; | Ali et al. [59] |
Myricetin | Oxalic Acid; Malic Acid; Propanedioic Acid; Levulinic Acid; p-Toluenesulfonic Acid; | 2.25; 2.50; 3.50; 20.00; 143.00; | |||
Platycladi Cacumen | UAE | Myricitrin | Levulinic Acid; Levulinic Acid; Levulinic Acid; | 1.40; 1.49; 1.49; | Zhuang et al. [60] |
Camelia sinesis Seed Oil | H/S | Naringenin | Propanedioic Acid | 0.22 | Wang et al. [67] |
Buckwheat Sprouts | UAE | Orientin | Oxalic Acid; Propanedioic Acid; | 0.64; 0.85; | Mansur et al. [53] |
Grape Skin | UAE | Peonidin-3-(6-O-p-coumaroyl)monoglucoside | Malic Acid | 1.50 | Radošević et al. [17] |
Peonidin-3-O-monoglucoside | Malic Acid | 3.17 | |||
Petunidin-3-O-monoglucoside | Malic Acid | 3.00 | |||
Quercetin-3-O-glucoside | Malic Acid | 0.67 | |||
Buckwheat Sprouts | UAE | Quercetin-3-O-robinoside | Oxalic Acid; Propanedioic Acid; | 0.33; 0.81; | Mansur et al. [53] |
Platycladi cacumen | UAE | Quercitrin | Levulinic Acid; Levulinic Acid; | 1.38; 1.45; | Zhuang et al. [60] |
Buckwheat Sprouts | UAE | Rutin | Oxalic Acidc; Propanedioic Acidc; Oxalic Acidc; Levulinic Acid; Malic Acid; Propanedioic Acidc; p-Toluenesulfonic Acid; | 0.51; 0.82; 0.88; 1.38; 1.88; 2.25; 11.38; | Mansur et al. [53] |
Camelia sinesis Seed Oil | H/S | Taxifolin | Propanedioic Acid | 0.39 | Wang et al. [67] |
Spent Coffee | UAE | Total Flavonoids | Citric Acid; Propanedioic Acid; Tartaric Acid; Lactic Acid; | 1.09; 1.10; 1.31; 1.66; | Yoo et al. [14] |
Camelia sinesis Seed Oil; Buckwheat Sprouts | H/S; UAE | Vitexin | Propanedioic Acid; Oxalic Acid; Propanedioic Acid; | 0.24; 0.62; 0.83; | Wang et al. [67]; Mansur et al. [53] |
Sugar-based systems | |||||
Platycladi cacumen | UAE | Amentoflavone | Glucose; Glucose; | 0.12; 0.17; | Zhuang et al. [60] |
Virgin Olive Oil | H/S | Apigenin | Sucrose; Sucrose; | 0.45; 0.69; | Garcia et al. [16] |
Grape Skin | UAE | Catechin | Glucose; Fructose; Xylose; | 4.00; 5.00; 6.00; | Radošević et al. [17] |
Cyanidin-3-O-monoglucoside | Fructose; Glucose; Xylose; | 0.67; 0.67; 0.67; | |||
Delphinidin-3-O-monoglucoside | Xylose; Fructose; Glucose; | 1.13; 1.00; 0.50; | |||
Camelia sinesis | UAE | Epigallocatechin gallate | Sucrose; Glucose; | 0.94; 1.05; | Jeong et al. [22] |
Nobis tangerine | UAE | Hespiridin | Glucose; Fructose; | 0.87; 0.91; | Xu et al. [21] |
Virgin Olive Oil | H/S | Luteolin | Sucrose b; Sucrose b; | 0.79; 0.96; | Garcia et al. [16] |
Grape Skin | UAE | Malvidin-3-(6-O-p-coumaroyl)monoglucoside | Glucose; Fructose; Xylose; | 2.20; 2.30; 2.40; | Radošević et al. [17] |
Grape Skin | UAE | Malvidin-3-O-acetylmonoglucoside | Fructose; Glucose; Xylose; | 2.00; 2.00; 2.00; | Radošević et al. [17] |
Grape Skin | UAE | Malvidin-3-O-monoglucoside | Glucose; Fructose; Xylose; | 1.24; 1.35; 1.43; | Radošević et al. [17] |
Platycladi cacumen | UAE | Myricitrin | Glucose a; Glucose a; | 1.06; 1.19; | Zhuang et al. [60] |
Grape Skin | UAE | Peonidin-3-(6-O-p-coumaroyl)monoglucoside | Fructose; Glucose; Xylose; | 1.00; 1.00; 1.00; | Radošević et al. [17] |
Grape Skin | UAE | Peonidin-3-O-monoglucoside | Glucose; Fructose; Xylose; | 1.00; 1.67; 3.00; | Radošević et al. [17] |
Grape Skin | UAE | Petunidin-3-O-monoglucoside | Fructose; Glucose; Xylose; | 2.00; 2.00; 2.00; | Radošević et al. [17] |
Grape Skin | UAE | Quercetin-3-O-glucoside | Glucose; Xylose; Fructose; | 0.33; 0.67; 1.00; | Radošević et al. [17] |
Platycladi cacumen | UAE | Quercitrin | Glucose; Glucose; | 0.99; 1.13; | Zhuang et al. [60] |
Tartary buckwheat hull | UAE | Rutin | Glucose | 1.12 | Huang et al. [68] |
Spent Coffee | UAE | Total Flavonoids | Fructose c; Glucose c; Xylose; Sucrose c; Glucose c; Fructose c; Sucrose c; | 0.41; 0.47; 0.49; 0.52; 1.59; 1.02; 1.00; | Yoo et al. [14] |
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Water EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Lonicerae japonicae Flos | MAE | 3,4-Dicafeoylquinic Acid | 1,2-Propanediol; Sorbitol; 1,4-Butanediol; Glycerol; | 15.6; 16; 19.6; 20.4; | Peng et al. [69] |
3,5-Dicafeoylquinic Acid | 1,2-Propanediol; Sorbitol; Glycerol; Ethylene Glycol; 1,4-Butanediol; 1,3-Butanediol; | 0.91; 0.94; 1.05; 1.14; 1.32; 1.65; | |||
4,5-Dicafeoylquinic Acid | Sorbitol; 1,2-Propanediol; Glycerol; 1,4-Butanediol; 1,3-Butanediol; Ethylene Glycol; | 1.18; 1.56; 1.74; 2.01; 2.38; 2.67; | |||
Caffeic Acid | 1,2-Propanediol; Sorbitol; 1,4-Butanediol; Glycerol; Ethylene Glycol; 1,3-Butanediol; | 0.89; 1.03; 1.3; 1.51; 2.03; 2.16; | |||
Chlorogenic Acid | 1,2-Propanediol; Glycerol; Sorbitol; 1,4-Butanediol; Ethylene Glycol; 1,3-Butanediol; | 0.95; 1.09; 1.13; 1.26; 1.26; 1.53; | |||
Wild Rice Powder | UAE | Ferulic acid | Glycerol; 1,4-Butanediol; | 1.61; 1.95; | Zeng et al. [61] |
p-Coumaric acid | 1,4-Butanediol | 0.24 | |||
p-Hydroxybenzaldehyde | 1,4-Butanediol; Glycerol; | 1.31; 3.10; | |||
p-Hydroxybenzoic acid | Glycerol; 1,4-Butanediol; | 1.54; 1.72; | |||
Protocatechuic acid | 1,4-Butanediol; Glycerol; | 0.64; 0.70; | |||
Sinapic acid | Glycerol; 1,4-Butanediol; | 1.63; 2.08; | |||
Syringic acid | 1,4-Butanediol | 0.59 | |||
Orange Peel; Spent Coffee | H/S; UAE | Total Phenolics | Ethylene Glycol a; Sorbitol; Glycerol a; Ethylene Glycol a; Ethylene Glycol a; Glycerol a; Glycerol a; Ethylene Glycol a; Glycerol a; 1,4-Butanediol; 1,6-Hexanediol; | 0.82; 0.83; 0.87; 1.17; 1.44; 1.51; 1.57; 1.58; 1.84; 2.18; 2.32; | Ozturk et al. [70]; Yoo et al. [14] |
Wild Rice Powder | UAE | Vanilin | 1,4-Butanediol; Glycerol; | 0.87; 1.04; | Zeng et al. [61] |
Vanillic acid | Glycerol; 1,4-Butanediol; | 0.67; 0.91; | |||
Amide-based systems | |||||
Lonicerae japonicae Flos | MAE | 3,4-Dicafeoylquinic Acid | Urea | 119.20 | Peng et al. [69] |
3,5-Dicafeoylquinic Acid | 0.43 | ||||
4,5-Dicafeoylquinic Acid | 1.99 | ||||
Caffeic Acid | 2.97 | ||||
Chlorogenic Acid | 0.60 | ||||
Wild Rice Powder | UAE | ferulic acid | Urea | 1.37 | Zeng et al. [61] |
p-Coumaric acid | 2.46 | ||||
p-Hydroxybenzaldehyde | 2.06 | ||||
p-Hydroxybenzoic acid | 1.68 | ||||
Protocatechuic acid | 2.56 | ||||
Sinapic acid | 1.39 | ||||
Syringic acid | 0.64 | ||||
Spent Coffee | UAE | Total Phenolics | Urea; Acetamide; | 0.91; 1.65; | Yoo et al. [14] |
Wild Rice Powder | UAE | Vanilin | Urea | 1.45 | Zeng et al. [61] |
Vanillic acid | 0.68 | ||||
Organic-acid-based systems | |||||
Lonicerae japonicae Flos | MAE | 3,4-Dicafeoylquinic Acid | Propanedioic Acid | 18.40 | Peng et al. [69] |
Caffeic Acid | Propanedioic Acid | 9.46 | |||
4,5-Dicafeoylquinic Acid | Propanedioic Acid | 1.67 | |||
Wild Rice Powder | UAE | p-Coumaric acid | Lactic Acid; Malic Acid; | 1.18; 3.36; | Zeng et al. [61] |
Protocatechuic acid | Malic Acid; Lactic Acid; | 1.85; 2.06; | |||
p-Hydroxybenzaldehyde | Lactic Acid; Malic Acid; | 0.07; 4.06; | |||
Juglans regia L.; Lonicerae japonicae Flos | H/S; MAE | Chlorogenic Acid | 5-Phenylvaleric Acid; 3-Phenylpropionic Acid; 4-Phenylbutyric Acid; Citric Acid; Glutaric Acid; Acetic Acid; Phenylacetic Acid; Malic Acid; 3-Phenylpropionic Acid; Valeric Acid; Propanedioic Acid; Lactic Acid; Glycolic Acid; Butyric Acid; Propionic Acid; Propanedioic Acid; | 0.39; 0.46; 0.70; 0.81; 0.81; 0.91; 0.91; 0.93; 1.00; 1.00; 1.04; 1.06; 1.15; 1.35; 1.44; 1.23; | Vieira et al. [57]; Peng et al. [69] |
Wild Rice Powder | UAE | p-Hydroxybenzoic acid | Lactic Acid; Malic Acid; | 1.38; 1.74; | Zeng et al. [61] |
Syringic acid | Lactic Acid; Malic Acid; | 0.20; 0.62; | |||
Vanilin | Lactic Acid; Malic Acid; | 1.21; 1.66; | |||
Lonicerae japonicae Flos | MAE | 3,5-Dicafeoylquinic Acid | Propanedioic Acid | 1.29 | Peng et al. [69] |
Wild Rice Powder | UAE | Vanillic acid | Malic Acid | 0.57 | Zeng et al. [61] |
Sinapic acid | Lactic Acid; Malic Acid; | 1.38; 1.61; | |||
Ferulic acid | Lactic Acid; Malic Acid; | 0.99; 1.31; | |||
Dittany; Fennel; Sage; Marjoram; Spent Coffee; Mint; | UAE | Total Phenolics | Lactic Acid; Lactic Acid; Lactic Acid; Lactic Acid; Propanedioic Acid; Citric Acid; Lactic Acid; | 1.45; 1.50; 1.56; 1.74; 1.77; 1.78; 2.13; | Bakirtzi et al. [62]; Yoo et al. [14] |
Sugar-based systems | |||||
Lonicerae japonicae Flos | MAE | 3,4-Dicafeoylquinic Acid | Glucose | 13.60 | Peng et al. [69] |
Caffeic Acid | Glucose | 0.78 | |||
4,5-Dicafeoylquinic Acid | Glucose | 0.90 | |||
Wild Rice Powder | UAE | p-Coumaric acid | Fructose; Glucose; | 0.35; 0.76; | Zeng et al. [61] |
Protocatechuic acid | Fructose; Glucose; | 0.98; 1.58; | |||
p-Hydroxybenzaldehyde | Fructose; Glucose; | 0.48; 1.93; | |||
p-Hydroxybenzoic acid | Glucose; Fructose; | 1.26; 1.43; | |||
Syringic acid | Fructose; Glucose; | 0.34; 0.39; | |||
Vanilin | Fructose; Glucose; | 0.76; 0.98; | |||
Lonicerae japonicae Flos | MAE | 3,5-Dicafeoylquinic Acid | Glucose | 0.78 | Peng et al. [69] |
Chlorogenic Acid | Glucose | 0.88 | |||
Wild Rice Powder | UAE | Vanillic acid | Glucose; Fructose; | 0.92; 1.02; | Zeng et al. [61] |
Sinapic acid | Glucose; Fructose; | 0.84; 1.92; | |||
Ferulic acid | Glucose; Fructose; | 0.12; 1.83; | |||
Spent Coffee | UAE | Total Phenolics | Glucose; Sucrose; Xylose; Fructose; | 0.49; 0.72; 1.52; 2.94; | Yoo et al. [14] |
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Ethanol EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Hibiscus sabdariffa L. | MAE | 5-O-Caffeoylshikimic acid | Maltose; Ethylene Glycol; 1,2-Propanediol; | 1.24; 1.49; 1.54; | Alañón et al. [71] |
Chlorogenic acid | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.76; 0.96; 0.98; | |||
Chlorogenic acid quinone | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.93; 1.06; 1.17; | |||
Coumaroylquinic acid | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.74; 0.95; 0.96; | |||
Cryptochlorogenic acid | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.78; 0.96; 1; | |||
Rosmarinus officinalis L. | UAE | Ferulic acid | Glycerol; 1,2-Propanediol; Glycerol; 1,4-Butanediol; | 4.34; 5.45; 8.26; 9.99; | Barbieri et al. [56] |
Wild Rice Powder | UAE | p-Hydroxybenzoic acid | Glycerol; 1,4-Butanediol; | 2.47; 2.77; | Zeng et al. [61] |
Protocatechuic acid | 1,4-Butanediol; Glycerol; | 0.54; 0.59; | |||
Rosmarinus officinalis L. | UAE | Rosmarinic Acid | Glycerol; 1,2-Propanediol; | 1.9; 2.7; | Barbieri et al. [56] |
Rutin | Glycerol | 1.51 | |||
Wild Rice Powder | UAE | Sinapic acid | Glycerol; 1,4-Butanediol; | 0.89; 1.14; | Zeng et al. [61] |
Syringic acid | Glycerol; 1,4-Butanediol; | 0.01; 2.44; | |||
Cajanus cajan; Orange Peel; Spent Coffee; Rosmarinus officinalis L.; Spent Coffee Grounds; | MAE; H/S; UAE; | Total Phenolics | Maltose; Sorbitol c; Ethylene Glycol c; Glycerol b,c; Sorbitol c; Ethylene Glycol c; Ethylene Glycol b,c; 1,4-Butanediol b,c; Glycerol b,c; Ethylene Glycol b,c; Glycerol b,c; Glycerol b,c; Ethylene Glycol b,c; 1,4-Butanediol b; 1,4-Butanediol b; 1,2-Propanediol b,c; Glycerol b,c; 1,3-Butanediol b; 1,4-Butanediol b,c; 1,6-Hexanediol b,c; 1,2-Butanediol b; 1,3-Butanediolb; 1,4-Butanediolb; 1,2-Butanediolb; 1,3-Propanediolb; 1,2-Propanediolb; 1,3-Propanediolb; 1,2-Propanediolb; 1,2-Propanediolb; 1,3-Propanediolb; 1,3-Butanediolb; 1,2-Butanediolb; | 0.5; 0.54; 0.56; 0.59; 0.59; 0.72; 0.8; 0.81; 0.9; 0.98; 1.03; 1.11; 1.12; 1.14; 1.16; 1.22; 1.25; 1.35; 1.54; 1.64; 1.68; 1.81; 2.02; 2.44; 2.83; 3.8; 4.45; 4.48; 5.14; 6.25; 6.54; 7.47; | Wei et al. [72]; Ozturk et al. [70]; Yoo et al. [14]; Barbieri et al. [56]; Krisanti et al. [73]; |
Wild Rice Powder | UAE | Vanilin | 1,4-Butanediol; Glycerol; | 0.98; 1.17; | Zeng et al. [61] |
Vanillic acid | Glycerol; 1,4-Butanediol; | 1.15; 1.56; | |||
Hibiscus sabdariffa L. | MAE | Neochlorogenic acid | Maltose; 1,2-Propanediol; Ethylene Glycol; | 0.74; 0.93; 1; | Alañón et al. [71] |
Amide-based systems | |||||
Hibiscus sabdariffa L. | MAE | 5-O-Caffeoylshikimic acid | Urea | 1.62 | Alañón et al. [71] |
Chlorogenic acid | Urea | 0.94 | |||
Chlorogenic acid quinone | Urea | 0.97 | |||
Coumaroylquinic acid | Urea | 0.94 | |||
Cryptochlorogenic acid | Urea | 1.03 | |||
Wild Rice Powder | UAE | ferulic acid | Urea | 7.00 | Zeng et al. [61] |
p-Hydroxybenzoic acid | Urea | 2.70 | |||
Protocatechuic acid | Urea | 2.16 | |||
Sinapic acid | Urea | 0.76 | |||
Syringic acid | Urea | 2.66 | |||
Hibiscus sabdariffa L. | MAE | Neochlorogenic acid | Urea | 1.03 | Alañón et al. [71] |
Spent Coffee | UAE | Total Phenolics | Urea; Acetamide; | 0.64; 1.16; | Yoo et al. [14] |
Wild Rice Powder | UAE | Vanilin | Urea | 1.63 | Zeng et al. [61] |
Vanillic acid | Urea | 1.17 | |||
Organic-acid-based systems | |||||
Hibiscus sabdariffa L. | MAE | 5-O-Caffeoylshikimic acid | Oxalic Acid; Lactic Acid; | 1.27; 1.82; | Alañón et al. [71] |
Chlorogenic acid | Lactic Acid; Oxalic Acid; | 0.94; 0.94; | |||
Chlorogenic acid quinone | Oxalic Acid; Lactic Acid; | 0.92; 1.04; | |||
Coumaroylquinic acid | Lactic Acid; Oxalic Acid; | 0.99; 1.03; | |||
Cryptochlorogenic acid | Lactic Acid; Oxalic Acid; | 1.15; 1.18; | |||
Neochlorogenic acid | Lactic Acid; Oxalic Acid; | 0.94; 1.13; | |||
Aegle marmelos | UAE | Ascorbic Acid | Oxalic Acid b; Oxalic Acid b; Oxalic Acid b; | 0.64; 1.93; 2.17; | Saha et al. [65] |
Juglans regia L. | H/S | Chlorogenic Acid | 5-Phenylvaleric Acid; 3-Phenylpropionic Acid; 4-Phenylbutyric Acid; Citric Acid; Glutaric Acid; Acetic Acid; Phenylacetic Acid; Malic Acid; 3-Phenylpropionic Acid; Valeric Acid; Propanedioic Acid; Lactic Acid; Glycolic Acid; Butyric Acid; Propionic Acid; | 0.43; 0.51; 0.78; 0.9; 0.9; 1; 1; 1.02; 1.1; 1.1; 1.14; 1.16; 1.27; 1.49; 1.59; | Vieira et al. [57] |
Wild Rice Powder; Rosmarinus officinalis L.; | UAE | Ferulic acid | Lactic Acid; Oxalic Acid; Lactic Acid; Malic Acid; | 5.06; 5.42; 5.96; 6.71; | Zeng et al. [61]; Barbieri et al. [56]; |
Aegle marmelos | UAE | Gallic Acid | Oxalic Acid b; Oxalic Acid b; Oxalic Acid b; | 0.73; 1.56; 1.65; | Saha et al. [65] |
p-Coumaric acid | Oxalic Acid b; Oxalic Acid b; Oxalic Acid b; | 0.66; 2.07; 2.14; | |||
Wild Rice Powder | UAE | p-Hydroxybenzoic acid | Lactic Acid; Malic Acid; | 2.21; 2.79; | Zeng et al. [61] |
Aegle marmelos; Wild Rice Powder; | UAE | Protocatechuic acid | Oxalic Acid b; Malic Acid; Lactic Acid; Oxalic Acid b; Oxalic Acid b; | 1.2; 1.56; 1.74; 2.03; 2.28; | Saha et al. [65]; Zeng et al. [61]; |
Rosmarinus officinalis L. | UAE | Rosmarinic Acid | Oxalic Acid; Lactic Acid; | 1.9; 2.52; | Barbieri et al. [56] |
Rutin | Oxalic Acid; Lactic Acid; | 2.02; 3.25; | |||
Wild Rice Powder | UAE | Sinapic acid | Lactic Acid; Malic Acid; | 0.75; 0.88; | Saha et al. [65] |
Syringic acid | Lactic Acid; Malic Acid; | 0.85; 2.6; | |||
Cajanus cajan | MAE | Total Phenolics | Lactic Acid b; Malic Acid; Oxalic Acid; Citric Acid b; Lactic Acid b; Lactic Acid b; Lactic Acid b; Propanedioic Acid; Citric Acid b; Lactic Acid b; Lactic Acid b; Lactic Acid b; Levulinic Acid b; Levulinic Acid b; Lactic Acid b; Levulinic Acid b; Lactic Acid b; Lactic Acid b; | 0.49; 0.63; 0.92; 0.99; 1.03; 1.18; 1.21; 1.25; 1.26; 1.27; 1.47; 1.59; 2.47; 2.8; 3.38; 3.6; 3.93; 5.69; | Wei et al. [74] |
Wild Rice Powder | UAE | Vanilin | Lactic Acid | 1.36 | Zeng et al. [61] |
Sugar-based systems | |||||
Hibiscus sabdariffa L. | MAE | 5-O-Caffeoylshikimic acid | Fructose; Glucose; | 1.36; 1.38; | Alañón et al. [63] |
Chlorogenic acid | Glucose; Fructose; | 0.84; 0.86; | |||
Chlorogenic acid quinone | Fructose; Glucose; | 0.97; 1.06; | |||
Coumaroylquinic acid | Glucose; Fructose; | 0.83; 0.85; | |||
Cryptochlorogenic acid | Fructose; Glucose; | 0.87; 0.87; | |||
Rosmarinus officinalis L. | UAE | Ferulic acid | Glucose; Fructose; | 0.61; 9.38; | Barbieri et al. [56] |
Wild Rice Powder | UAE | p-Hydroxybenzoic acid | Glucose; Fructose; | 2.02; 2.3; | Zeng et al. [61] |
Protocatechuic acid | Fructose; Glucose; | 0.83; 1.33; | |||
Sinapic acid | Glucose; Fructose; | 0.46; 1.05; | |||
Syringic acid | Fructose; Glucose; | 1.43; 1.61; | |||
Spent Coffee | UAE | Total Phenolics | Glucose b; Sucrose b; Sucrose b; Glucose b; Xylose; Fructose; | 0.35; 0.51; 0.71; 0.88; 1.08; 2.08; | Yoo et al. [14] |
Wild Rice Powder | UAE | Vanilin | Fructose; Glucose; | 0.86; 1.1; | Zeng et al. [61] |
Vanillic acid | Glucose; Fructose; | 1.57; 1.75; |
Natural Matrix | Extraction Method | Extracted Compound | Hydrogen Bond Donor | Methanol EE | Reference |
---|---|---|---|---|---|
Alcohol-based systems | |||||
Artemisia argyi | UAE | 3,4-Di-O-Cafeoylquinic Acid | Glycerol; Ethylene Glycol; | 0.66; 0.77; | Duan et al. [75] |
3,5-Di-O-Cafeoylquinic Acid | Glycerol; Ethylene Glycol; | 0.65; 0.96; | |||
3-Caffeoylquinic Acid | Glycerol; Ethylene Glycol; | 0.70; 0.86; | |||
4,5-Di-O-Cafeoylquinic Acid | Glycerol; Ethylene Glycol; | 0.64; 0.84; | |||
Camelia sinesis Seed Oil | H/S | Benzoic Acid | Propilene Glycol; Ethylene Glycol; Glycerol; Xylitol; | 0.63; 0.90; 1.07; 1.19; | Wang et al. [67] |
Caffeic Acid | Xylitol; Propilene Glycol; Ethylene Glycol; Glycerol; | 1.32; 1.88; 1.97; 4.54; | |||
Cinnamic Acid | Xylitol; Glycerol; Ethylene Glycol; Propilene Glycol; | 0.67; 1.08; 1.29; 2.18; | |||
Ferulic Acid | Glycerol; Ethylene Glycol; Propilene Glycol; Xylitol; | 0.54; 0.59; 0.74; 2.65; | |||
Gallic Acid | Propilene Glycol; Glycerol; Xylitol; Propanedioic Acid; Ethylene Glycol; | 0.59; 0.96; 1.12; 0.75; 1.19; | |||
p-Coumaric acid | Xylitol; Ethylene Glycol; Propilene Glycol; Glycerol; | 0.48; 0.81; 0.92; 1.26; | |||
Phthalic Acid | Glycerol; Propilene Glycol; Ethylene Glycol; Xylitol; | 1.25; 1.51; 1.92; 2.07; | |||
p-Hydrobenzoic Acid | Xylitol; Propilene Glycol; Ethylene Glycol; Glycerol; | 0.31; 0.72; 0.74; 0.97; | |||
p-Hydroxyphenylacetic Acid | Propilene Glycol; Glycerol; Ethylene Glycol; Xylitol; | 1.38; 1.69; 3.24; 4.36; | |||
Protocatechuic Acid | Propilene Glycol; Xylitol; Ethylene Glycol; Glycerol; | 0.19; 0.32; 0.7; 1.6; | |||
Prunella vulgaris | H/S | Rosmairic Acid | 2,3-Butanediol b; 1,4-Butanediol b; 1,4-Butanediol b; 1,3-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 1,3-Butanediol b; 2,3-Butanediol b; 2,3-Butanediol b; 2,3-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 1,4-Butanediol b; 1,2-Propylene glycol b; 2,3-Butanediol b; 1,3-Butanediol b; Glycerol b; Glycerol b; Glycerol b; 1,2-Propylene glycol b; Glycerol b; 1,2-Propylene glycol b; Glycerol b; 1,2-Propylene glycol b; Ethylene Glycol b; 1,2-Propylene glycol b; Ethylene Glycol b; Ethylene Glycol b; Ethylene Glycol b; Ethylene Glycol b; | 0.36; 0.43; 0.43; 0.45; 0.45; 0.46; 0.49; 0.49; 0.52; 0.53; 0.55; 0.55; 0.58; 0.61; 0.62; 0.63; 0.63; 0.63; 0.68; 0.68; 0.69; 0.7; 0.74; 0.78; 0.79; 0.79; 0.81; 0.85; 0.87; 0.91; | Xia et al. [76] |
Salviaflaside | 2,3-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 1,3-Butanediol b; 1,4-Butanediol b; 2,3-Butanediol b; 2,3-Butanediol b; 2,3-Butanediol b; 1,3-Butanediol b; 1,2-Propylene glycol b; 1,4-Butanediol b; Glycerol b; 2,3-Butanediol b; Glycerol b; Glycerol b; Glycerol b; 1,2-Propylene glycol b; Glycerol b; 1,2-Propylene glycol b; 1,2-Propylene glycol b; Ethylene Glycol b; 1,2-Propylene glycol b; Ethylene Glycol b; Ethylene Glycol b; Ethylene Glycol b; Ethylene Glycol b; | 0.46; 0.51; 0.51; 0.54; 0.57; 0.6; 0.60; 0.68; 0.69; 0.69; 0.70; 0.70; 0.74; 0.76; 0.77; 0.78; 0.79; 0.8; 0.81; 0.82; 0.82; 0.83; 0.85; 0.86; 0.87; 0.87; 0.88; 0.90; 0.91; 0.98; | |||
Camelia sinesis Seed Oil | H/S | Sinapic Acid | Glycerol; Ethylene Glycol; Xylitol; Propilene Glycol; | 0.56; 0.58; 0.77; 1.06; | Wang et al. [67] |
Spent Coffee | UAE | Total Phenolics | Sorbitol; Glycerol; Ethylene Glycol; 1,4-Butanediol; 1,6-Hexanediol; | 0.58; 1.1; 1.11; 1.53; 1.62; | Yoo et al. [14] |
Camelia sinesis Seed Oil | H/S | Vanillic Acid | Glycerol; Xylitol; Ethylene Glycol; Propilene Glycol; | 0.82; 1.32; 1.09; 1.07; | Wang et al. [67] |
Amide-based systems | |||||
Artemisia argyi | UAE | 3,4-Di-O-Cafeoylquinic Acid | Urea | 0.97 | Duan et al. [75] |
3,5-Di-O-Cafeoylquinic Acid | Urea | 0.84 | |||
3-Caffeoylquinic Acid | Urea | 0.92 | |||
4,5-Di-O-Cafeoylquinic Acid | Urea | 0.77 | |||
Spent Coffee; Aronia melanocarpa | UAE | Total Phenolics | Urea b,c; Urea b,c; Urea b,c; Acetamide; | 0.63; 0.64; 0.74; 1.15; | Yoo et al. [14]; Razboršek et al. [77] |
Organic-acid-based systems | |||||
Artemisia argyi | UAE | 3,4-Di-O-Cafeoylquinic Acid | Glutaric Acid; Malic Acid; Propanedioic Acid; | 0.72; 0.89; 0.89; | Duan et al. [75] |
3,5-Di-O-Cafeoylquinic Acid | Glutaric Acid; Propanedioic Acid; Malic Acid; | 0.73; 0.89; 0.94; | |||
3-Caffeoylquinic Acid | Glutaric Acid; Propanedioic Acid; Malic Acid; | 0.73; 0.89; 0.94; | |||
4,5-Di-O-Cafeoylquinic Acid | Glutaric Acid; Propanedioic Acid; Malic Acid; | 0.7; 0.86; 0.93; | |||
Camelia sinesis Seed Oil | H/S | Benzoic Acid | Propanedioic Acid | 0.22 | Wang et al. [67] |
Cinnamic Acid | Propanedioic Acid | 0.7 | |||
Ferulic Acid | Propanedioic Acid | 0.31 | |||
Gallic Acid | Propanedioic Acid | 0.75 | |||
p-Coumaric acid | Propanedioic Acid | 0.01 | |||
Phthalic Acid | Propanedioic Acid | 0.4 | |||
p-Hydrobenzoic Acid | Propanedioic Acid | 0.22 | |||
p-Hydroxyphenylacetic Acid | Propanedioic Acid | 1.39 | |||
Protocatechuic Acid | Propanedioic Acid | 0.07 | |||
Sinapic Acid | Propanedioic Acid | 0.19 | |||
Aronia melanocarpa | UAE | Total Phenolics | Lactic Acid; Lactic Acid; Lactic Acid; Lactic Acid; Propanedioic Acid; Citric Acid; | 0.59; 0.63; 0.88; 1.02; 1.24; 1.25; | Razboršek et al. [77] |
Camelia sinesis Seed Oil | H/S | Vanillic Acid | Propanedioic Acid | 0.36 | Wang et al. [67] |
Sugar-based systems | |||||
Spent Coffee; Aronia melanocarpa; | UAE | Total Phenolics | Glucose; Sucrose; Glucose; Glucose; | 0.34; 0.51; 0.87; 0.96; | Yoo et al. [14]; Razboršek et al. [77]; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rente, D.; Paiva, A.; Duarte, A.R. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules 2021, 26, 2336. https://doi.org/10.3390/molecules26082336
Rente D, Paiva A, Duarte AR. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules. 2021; 26(8):2336. https://doi.org/10.3390/molecules26082336
Chicago/Turabian StyleRente, Duarte, Alexandre Paiva, and Ana Rita Duarte. 2021. "The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems" Molecules 26, no. 8: 2336. https://doi.org/10.3390/molecules26082336
APA StyleRente, D., Paiva, A., & Duarte, A. R. (2021). The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules, 26(8), 2336. https://doi.org/10.3390/molecules26082336