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Abstract: A scorpionate Zn2+ complex, constituted by a macrocyclic pyridinophane core attached to
a pendant arm containing a fluorescent pyridyl-oxadiazole-phenyl unit (PyPD), has been shown to
selectively recognize chloride anions, giving rise to changes in fluorescence emission that are clearly
visible under a 365 nm UV lamp. This recognition event has been studied by means of absorption,
fluorescence, and NMR spectroscopy, and it involves the intramolecular displacement of the PyPD
unit by chloride anions. Moreover, since the chromophore is not removed from the system after the
recognition event, the fluorescence can readily be restored by elimination of the bound chloride anion.

Keywords: macrocyclic polyamine; metallo-receptor; fluorescence; chloride sensing

1. Introduction

Recognition of anionic species by fluorescent receptors has given rise to a great deal
of interest in the last years, and several books and review articles discussing this chem-
istry have been published [1–13]. Many of the reported examples involve molecules with
fluorescent organic components whose luminescence changes significantly upon their
interaction with a target anion. In addition, a number of the receptor molecules used are
metallo-receptors having Lewis acid metal sites as recognition points for the anionic guest
species [14–21]. On the other hand, there are also different examples of the use of displace-
ment assay methods in anion recognition [22–25]; namely, a chromophoric or fluorophoric
anionic dye bound to the receptor is removed by a competing non-chromophoric anionic
species, giving rise to a sharp change in its optical response. For example, evaluation
of DNA intercalators by their competition with ethidium bromide or of G-quadruplex
binders by thiazole orange are displacement assays very broadly employed in nucleic acid
chemistry [26–28].

Chloride anion is an important target to monitor due to its role in many fields; its
distribution in the biological environment means it often play critical roles such as, for
example, in the interaction with hemoglobin, where the alteration of its concentration in
plasma is associated with many pathologies [29–31].

For this reason, many sensor systems to detect chloride have been developed [32–34],
many of which involve binding chloride by H-bonding or charge-charge interactions, while
a few exploit the photochemical response of a metallo-receptor able to bind chloride [35–38].

Here, we report the case of a Zn2+ complex ([ZnL]2+) whose luminescence changes
selectively upon binding of chloride anion due to a molecular reorganization which in-
volves the removal of a bound pyridine nitrogen attached to an oxadiazole-phenyl group.
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The ligand is constituted by a macrocyclic pyridinophane core having a fluorescent pen-
dant arm containing a secondary nitrogen atom linked through a methylene spacer to
a pyridyl-oxadiazole-phenyl (PyPD) system (Figure 1). The Zn2+ complex can interact
with the target analyte displacing the pyridine of the pyridyl-oxadiazole-phenyl system
performing, thereby, a significant change in the fluorescence.
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Since the chloride displaces the chromophore without removing it from the system,
the fluorescence can be readily restored by precipitation of the chloride anions with, for
example, silver cations. A similar kind of mechanism has been described—although
without a Lewis acid metal site—for the recognition of glyphosate anions [39].

2. Results and Discussion
2.1. Spectrophotometric Studies

The free ligand is not emissive in CH3CN as it is totally quenched due to the PET effect
of the aliphatic amine lone-pairs of the side arm [40,41]; however, the coordination of Zn2+

to give the [ZnL]2+ species inhibits the PET effect, giving rise to an intense fluorescence
emission (Φf = 0.24) centered at 374 nm (λex = 278 nm).

Considering the highly fluorescent response exhibited by the [ZnL]2+ species in
CH3CN, a screening of its photochemical response to the addition of several anions was
performed in such medium. The screened anions include F−, Cl−, Br−, I−, NO3

−, HSO4
−,

H2PO4
−, and CH3COO− as their tetrabutylammonium salts. They were added in up

to 5-fold excess to a CH3CN solution containing the preformed [ZnL](ClO4)2 complex
(Figure S1, Supplementary Materials). Chloride has been the only anion able to affect
the absorption, fluorescence, and 1H-NMR spectra. Similar experiments, performed in
aqueous buffer pH = 7.4 solution, did not afford significant modifications although a little
decrease in the emission was found by the addition of the chloride anion (Figure S2).

The addition of chloride affects both the [ZnL]2+ absorption and fluorescence spectra
(Figure 2). In the absorption spectra, a lower energy band centered at 290 nm appears.
This absorption band can be safely ascribed to the PyPD chromophore not involved in
metal coordination; in fact, the free ligand L shows an intense absorption band centered
at 290 nm. The emission strongly decreases, although it is not fully quenched, and the
emission band shifts toward higher energy; once again, this shift is in agreement with the
emission properties of the ligand in which the PyPD is not involved in coordination [42]
(Figure S3). The trends of both the absorption band at 292 nm and the emission at 374 nm,
reach a plateau after the addition of one equivalent of chloride, highlighting that only one
anion can be bound by the [ZnL]2+ species (see inset in Figure 2a,b), in agreement with the
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NMR experiments (vide infra). These results can be related, as mentioned above, to the
replacement of the PyPD fragment from the coordination of Zn2+ by the chloride anion.
This implies that the PyPD moiety is no longer involved in the coordination and, therefore,
probably due to the reinstate of the conjugation among the three rings, interrupted by the
metal coordination as shown in the crystal structure [42], the absorption and emission
bands are restored at energies close to those of the free ligand. The lack of a full quenching
of the emission and the addition of only one chloride guest suggests that the aliphatic
amine function of the side arm is still involved in the coordination (data supported also by
NMR data) in the chloride adduct. However, the presence of the coordinated chloride close
to the PyPD acts as a quencher and the emission decreases, as schematically proposed in
Figure 3.
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Figure 2. UV-Vis absorption (a) and fluorescence titration (b) of [ZnL]2+ species (1.35 × 10−5 mol dm−3;
λex = 278 nm) with Bu4NCl in CH3CN solution at 298 ± 0.1 K. Inset: trend of the absorption at 292 nm
and of the emission intensity at 374 nm as a function of Cl− added.
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Figure 3. Proposed scheme for the formation of [ZnLCl]+ species.

The log K for the interaction between Cl− and [ZnL]2+ was evaluated by fitting the
UV-Vis and fluorescence tritation data The data showed a good fit for a 1:1 model, referring
to the reaction [ZnL]2+ + Cl− 
 [ZnLCl]+. The values obtained from the UV-Vis data (log
K = 6.10(3)) and from the fluorescence titrations (log K = 6.39(6)) were in good agreement.
These values highlight that the chloride anion is strongly bound by the [ZnL]2+ species,
forming a stable adduct.

The value is higher 2–4 logarithmic units than those usually found in chloride co-
ordination via H-bonding or charge-charge interactions [11,38,43], while it is in line, al-
though a little bit higher, than those found for the addition of chloride to mononuclear
Zn-complexes [18,37]. However, even though the influence of the solvent in the values of
the formation constant is crucial, being higher in an aprotic solvent such as CH3CN than
in water, the value found here suggests a high affinity for chloride in this system. Many
reasons could contribute to this such as, for example, the coordination environment of the
Zn2+ ion inferred by the ligand framework that might be able to exalt the affinity between
Zn2+ and a Cl− with respect to the other anions as well as the solvent and its solvation
power, which might again favor the addition of chloride.

Interestingly, the emission is restored to that of the [ZnL]2+ species when adding
one equivalent of AgNO3 to remove the chloride anion from the coordination sphere of
the metal ion in the spectra, a change that can be clearly seen under a 365 nm UV lamp
(Figure 4).
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Figure 4. Visual emission fluorescence of solutions containing (A) L; (B) [ZnL]2+; (C) [ZnL]2+ + 1
equiv. Bu4NCl; (D) + 1 equiv. AgNO3. All solutions in CH3CN at 298 K, [L] = 1.35 × 10−5 mol·dm−3;
images were recorded under a 365 nm UV lamp.

Competition experiments were also carried out by adding two equivalents of all
anions studied to a CH3CN solution containing [ZnL]+ and Cl− in 1:1 molar ratio (Figure 5,
orange bars). The result indicates that the emission of the [ZnLCl]+ cation is not perturbed
by the presence of other anions, highlighting the selective fluorescent response to chloride
also in the presence of these possible interfering anions.
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Figure 5. Plot of the ratio between the fluorescence emission intensity of [ZnL]2+ complex at 374 nm
(λex = 277 nm) (I) and the emission intensity in the presence of 1 equiv. of F−, Cl−, Br−, I−, OAc−,
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−, H2PO4
−, and NO3
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2.2. NMR Studies
1H-NMR spectra were recorded in CD3CN solution; the obtained spectrum for dis-

solving the solid [ZnL](ClO4)2 complex was the same as that obtained by adding one
equivalent of Zn2+ to a solution containing free L. The spectrum did not undergo further
modification after the addition of further equivalents of the metal ion, suggesting that
the [ZnL]2+ species is fully formed and that it is the only one existing in solution in such
experimental conditions. Figure 6 reports the spectra of the [ZnL]2+ species together with
that of free L. 1H spectra recorded in D2O present analogous features and are collected in
the ESI (Figures S4 and S5).
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Comparing the spectra of free L and [ZnL]2+ (Figure 6a,b, respectively), the aliphatic
resonances lose their equivalence on the NMR time scale due to the binding of Zn2+

because of the stiffening of the molecular framework produced by coordination of the
metal. However, the signals of the hydrogen atoms H3 and H8 in the benzylic positions to
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the pyridine of the macrocycle and of the PyPD, respectively, can be safely attributed. H3
presents two distinct signals due to two AB systems (JAB = 16.6 Hz); this means that the two
methylene groups are not equivalent between them as well as the hydrogen atoms inside
the same group, on the NMR time scale; H8 also exhibits an AB system (JAB = 16.8 Hz).

While the signals of H3 shift in different downfield and upfield directions, probably
because one of them is located close to the anisotropic cone of the aromatic ring, both
signals of H8 shift downfield. However, these shifts can be all attributed to the involvement
in the Zn2+ coordination of the amine functions in the benzylic position to Py and PyPD,
respectively, as supported by the crystal structure of the [ZnL]2+ species [42].

The aromatic resonances also shift compared to those of free L. In particular, H1 and
H2 belonging to the pyridine moiety of the macrocyclic ring shift downfield, and H2 lacks
the equivalence between the two protons passing from a doublet in the free L in two
doublets in the Zn2+ complex spectrum. This can be attributed to the involvement of this
pyridine in the Zn2+ coordination. The protons H10 and H11 of the PyPD moiety also
exhibit downfield shifts while H9 shifts upfield. These shifts highlight the involvement
in the coordination of the pyridine of the PyPD also suggesting, together with the other
pattern of signals, a similar coordination environment for the Zn2+ ion in solution as that
retrieved in the solid state. In other words, there is evidence that in CH3CN solution, all
amine functions of the macrocycle and the side arm, with both the pyridine rings included,
are involved in the coordination of Zn2+.

The addition of the chloride anion perturbs the spectrum of the [ZnL]2+ species (see
Figure 6c); the final spectrum was obtained with the addition of one equivalent of chloride
and no more modifications were observed by adding further chloride (Figure S6). The
change supports the binding of one chloride ion by [ZnL]2+, which thus behaves, as
observed by spectrophotometric studies, as a selective metallo-receptor for this anion to
give the [ZnLCl]+ species. Comparing the two spectra, the main changes are exhibited
by the side arm and by the benzylic hydrogen atoms H3 and H8 (see Figure 6b,c). The
resonances of the PyPD fragment return to similar chemical shifts exhibited in the free
L, mainly those of H9, H10, and H11, suggesting that the binding of chloride causes the
detachment of the PyPD pyridine binding group from the coordination of the metal ion
and that, probably, its position is substituted by the chloride. On the contrary, H1 and H2,
belonging to the pyridine of the macrocycle, shift downfield, resolving the non-equivalence
of H2 signals. In the aliphatic part, a lowering of the signals due to such protons can be
observed. In particular, H8 returns to a singlet with the addition of chloride while H3 shows
only one AB system and, thus, two doublets; however, both H3 and H8 resonances are
located in the average of the chemical shifts found in the [ZnL]2+ species, thus suggesting
that the aliphatic amine function of the side arm remains coordinated. All these changes
can be justified considering that the release of the PyPD from the coordination of Zn2+

and subsequent coordination of the chloride probably strengthens the bonds between the
metal and the macrocyclic part and reduces the molecular stiffness. This produces a higher
downfield shift of H1 and H2 and the reduction of the signals on the NMR time scale.

3. Materials and Methods
3.1. General Methods

All chemicals were purchased from Aldrich (Milano, Italy), Fluka (Milano, Italy) and
Lancaster (Kandel, Germany) in the highest commercially available quality. All the solvents
were dried prior to use.

3.2. Synthesis

Compound L, or 6-{2-[N-(6-(5-phenyl[1,3,4]oxadiazole-2-yl)-2-pyridyl)methylamino]
ethyl}-3,6,9-triaza-1-(2,6)-pyridinacyclodecaphane, and the mononuclear [ZnL](ClO4)2
complex were obtained following the synthetic procedures reported in [42].



Molecules 2021, 26, 2352 7 of 9

3.3. Spectroscopic Experiments

Fluorescence spectra were recorded at 298 K with a Varian Cary Eclipse spectrofluo-
rometer (Agilent Technologies, Milano, Italy). UV-Vis absorption spectra were recorded
at 298 K with a Varian Cary-100 spectrophotometer (Agilent Technologies, Milano, Italy)
equipped with a temperature control unit. The study of the interaction of anions with ZnL
complex was performed using CH3CN as solvent; a stock solution of ZnL was prepared
adding an equimolar amount of Zn(ClO4)2 to a 1.2 × 10−5 mol·dm−3 acetonitrile solution
containing L.

In a typical experiment, a solution containing the anion G (F−, Cl−, Br−, I−, NO3
−,

H2PO4
− and OAc− as tetrabutylammonium salts) was added to the solution containing

the metal complex, up to 5 equivalents with respect to the ligand. At least three sets of spec-
trophotometric titration curves for each G/ZnL system were obtained. All sets of curves
were treated either as single sets or as separate entities, for each system; no significant
variations were found in the values of the determined constants. The Hyperquad (2013
version) and HypSpec (2014 version, Protonic Software, Leeds, UK) computer programs
were used to process the spectrophotometric data [44].

3.4. NMR Experiments

NMR spectra were recorded on a Bruker Avance 400 spectrometer (Bruker Italia,
Milano, Italy) operating at 400.13 and 100.61 MHz for 1H and 13C, respectively, equipped
with a PABBO Z-gradient direct probe and a variable temperature unit. 1H- and 13C-NMR
spectra were referenced to residual solvent signals. The assignment of the NMR resonances
was supported by 2D experiments (Figures S7–S9). Two-dimensional experiments (COSY,
NOESY, and HSQC) were conducted using standard Bruker pulse sequences. The 2D-
NOESY experiments were conducted using a mixing time (d8) of 0.35 s.

NMR titrations with anions were carried out in CD3CN. In a typical experiment,
a 5 × 10−2 mol·dm−3 solution of the anion was added in 0.05 equiv. at a time to a
1 × 10−2 mol·dm−3 solution of the metal complex directly in the NMR tube; the tube
was then kept for 5 min at a temperature of 298.1 K before starting the acquisition of the
spectrum. The anions tested were added as their tetrabutylammonium salts.

4. Conclusions

Coordination of Zn2+ by the scorpiand-type azamacrocyclic ligand L, containing the
pyridyl-oxadiazole-phenyl moiety, results in a sharp chelation-induced enhancement of
the fluorescence. The fluorescent [ZnL]2+ complex can be used as metallo-receptor for
secondary species as coordinating anions. The studies revealed that, among the several
inorganic anions screened, only chloride is able to affect the photochemical emission and
absorption properties of the metal complex. It has been shown here that the luminescent
properties of the [ZnL]2+ complex, particularly the strong fluorescent quenching caused by
the chloride anions, makes this complex a suitable optical sensor for selectively sensing
chloride anions in solution.

NMR studies suggest that the recognition of chloride by the complex involves the
removal of the chromophore from the coordination sphere, which explains the sharp
quenching of the fluorescence observed. Since the PyPD moiety remains covalently at-
tached to the macrocycle after the interaction, the recognition event can be described
as an intramolecular fluorescence displacement assay. Moreover, this feature allows the
fluorescence to be readily restored when chloride is removed from the solution.

Supplementary Materials: The following material is available online. Figure S1: UV-Vis absorp-
tion (a) and fluorescence (b) spectra of [ZnL]2+ species alone and in the presence of 5 equivalents
of F−, Cl−, Br−, I−, NO3

−, HSO4
−, H2PO4

−, and CH3COO− added as tetrabutylammonium salts
([L] = 1.35 × 10−5 mol·dm−3; λex = 278 nm). Spectra recorded in CH3CN solution at 298 ± 0.1 K.
Figure S2: UV-Vis absorption (a) and fluorescence (b) titration of [ZnL]2+ species (1.35 × 10−5 mol·dm−3;
λex = 278 nm) with Bu4NCl in an aqueous buffer (HEPES, 0.5 M) solution at pH = 7.4.
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Figure S3: UV-Vis absorption (a) and fluorescence (b) spectra of L (black line), [ZnL]2+ (red line) and
[ZnLCl]+ species (blue line) (1.35 × 10−5 mol·dm−3; λex = 278 nm) in CH3CN solution at 298 ± 0.1 K.
Figure S4: 1H-NMR spectra of L (2.0 mM) in D2O at pD 6.0, in the presence of increasing equivalents
of Zn(ClO4)2. Figure S5: Aromatic region of the 1H-NMR spectra, Figure S6: 1H-NMR spectra of
[ZnL]2+ (1 × 10−2 mol·dm−3) in CD3CN at 298 K, in the presence of increasing equivalents of Bu4NCl.
Figure S7: 1H − 1H-COSY (a) and 1H − 13C HSQC (b) NMR spectra of L (1 × 10−2 mol·dm−3) in
CD3CN at 298 K. Figure S8: 1H − 1H-COSY (a) and 1H − 1H-NOESY (b) NMR spectra of [ZnL]2+

(1 × 10−2 mol·dm−3) in CD3CN at 298 K. Figure S9: 1H − 1H-COSY (a), 1H − 13C-HSQC (b) and 1H
− 1H-NOESY, and (c) NMR spectra of [ZnLCl]+ (1 × 10−2 mol·dm−3) in CD3CN at 298 K.
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