Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations
Abstract
:1. Introduction
2. Types of Nutraceuticals Based on Source, Nature and Application
2.1. Traditional Nutraceuticals and Products
2.1.1. Functional Foods
2.1.2. Carotenoids
2.1.3. Collagen Hydrolysate
2.1.4. Dietary Fibers
2.1.5. Fatty Acids
2.1.6. Phytochemicals
2.1.7. Herbs
2.1.8. Probiotics
2.1.9. Prebiotics
2.1.10. Dietary Supplements
2.2. Non-Conventional Approach
2.2.1. Fortified Nutraceuticals
2.2.2. Recombinant Nutraceuticals
Class/Type of Nutraceutical | Examples | Active Ingredient | Advantages | References |
---|---|---|---|---|
Traditional approaches | ||||
Functional foods | Tomatoes | Lycopene | Anticancer activities, e.g., lung and prostate, reduce blood pressure | [17] |
Salmon | Omega 3 | Lower cardiovascular, diabetes disease risk | [19] | |
Soy | Saponins | Antioxidant, detoxification of enzymes, stimulate immune response, hormonal metabolism | [18] | |
Fermented milk and milk products | L. acidophilus, Bifidobacterium spp. | Prevent gastrointestinal infections, lower the level of cholesterol | [73] | |
Marine algae | Fucoidans | Antioxidant, anticancer, anticoagulant activity | [74] | |
Broccoli | Sulforaphane, glucosinolates | Decrease risk of several cancers, antioxidant | [29,75] | |
Carrots | β-carotene | Reduce cancer risk, improve immune system | [29,76] | |
Aloe | Aloins | Wound healing, antiulcer, anti-inflammatory, immunostimulant, antimicrobial activity, hematopoietic stimulation | [77,78] | |
Turmeric | Curcumin | Anti-inflammatory, anticarcinogenic | [77,79] | |
Dietary supplements | Folic acid | Prevent defect in neural tubes, Red blood cells formation | [77,80] | |
Vitamin A | Antioxidant, growth, treat some skin diseases | [60] | ||
Calcium | Bone, muscles, teeth nerve health, prevent osteoporosis | [81,82] | ||
Iron | Carry oxygen, produce energy | [60] | ||
Vitamin D | Bone and teeth health, help in calcium absorption, musculoskeletal health | [83] | ||
Probiotics | Lactobacillus acidophilus, Bifidobacterium spp., Streptococci, Enterococci | Gut health, replace diarrhea-causing bacteria, anticancer | [60,84,85] | |
Prebiotics | Fructo-oligosaccharides | Enhance probiotics growth, bifidobacteria growth enhancement | [58] | |
Inulin | Enhance immune system, minerals absorption, protect bones | [57,84,86] | ||
Non-conventional approach | ||||
Fortified | Orange juice with calcium | Calcium, ascorbic acid | Glycemic control enhancement, sensitivity to insulin | [67] |
Anthocyanin-fortified bread | Anthocyanin | Reduce digestion rate | [68] | |
Recombinant | Gold kiwifruit | Ascorbic acid, carotenoids | Immune system enhancement | [13,71] |
3. Classification of Nutraceuticals Based on Modes of Action
3.1. Anti-Cancer Activity
3.2. Anti-Inflammatory Activity
3.3. Antioxidant Activity
3.4. Anti-Lipid Activity
4. Nutraceuticals’ Safety on Consumers
4.1. Nutraceuticals Associated with Genotoxicity and Carcinogenicity
4.2. Models to Evaluate Safety, Efficacy, and Potential Toxicities of Nutraceuticals
4.3. Toxicities Based on Interactions of Nutraceuticals with Other Drugs
4.4. Contaminants Compromising the Quality of Nutraceuticals
4.5. Regulatory Status of Nutraceuticals
4.6. Effects of Processing on Nutraceuticals
5. Current Trends and Future Prospects of Nutraceuticals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, L. Traditional Phytomedicinal Systems, Scientific Validations and Current Popularity as Nutraceuticals. 2013. Available online: https://www.semanticscholar.org/paper/Traditional-Phytomedicinal-Systems%2C-Scientific-and-Misra/7df8a6c6cc432a4cd711b8b6a96702f1908353d4 (accessed on 23 April 2020).
- Helal, N.A.; Eassa, H.A.; Amer, A.M.; Eltokhy, M.A.; Edafiogho, I.; Nounou, M.I. Nutraceuticals’ Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. Recent Pat. Drug Deliv. Formul. 2019, 13, 105–156. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Caramia, G.; Silvi, S. Probiotics: From the Ancient Wisdom to the Actual Therapeutical and Nutraceutical Perspective. In Probiotic Bacteria and Enteric Infections: Cytoprotection by Probiotic Bacteria; Malago, J.J., Koninkx, J.F.J.G., Marinsek-Logar, R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–37. [Google Scholar]
- Ried, K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J. Nutr. 2016, 146, 389S–396S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affuso, F.; Ruvolo, A.; Micillo, F.; Saccà, L.; Fazio, S. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-L.; Chen, S.-G.; Chen, F.; Xie, Y.-Q.; Han, M.-D.; Luo, C.-X.; Zhao, Y.-Y.; Gaob, Y.-Q. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J. Funct. Foods 2016, 20, 317–331. [Google Scholar] [CrossRef]
- Pitchaiah, G.; Akula, A.; Chandi, V. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats. Pharmacogn. Mag. 2017, 13, 46–50. [Google Scholar]
- Singla, V.; Pratap Mouli, V.; Garg, S.K.; Rai, T.; Choudhury, B.N.; Verma, P.; Deb, R.; Tiwari, V.; Rohatgi, S.; Dhingra, R.; et al. Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis—A randomized, placebo-controlled, pilot study. J. Crohn’s Colitis 2014, 8, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaplin, D.D. Overview of the Immune Response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Ruchi, S. Role of nutraceuticals in health care: A review. Int. J. Green Pharm. 2017, 11. [Google Scholar] [CrossRef]
- Singh, J.; Sinha, S. Classification, regulatory acts and applications of nutraceuticals for health. Int. J. Pharm. Bio Sci. 2012, 2, 177–187. [Google Scholar]
- Scrinis, G. Functional foods or functionally marketed foods? A critique of, and alternatives to, the category of “functional foods”. Public Health Nutr. 2008, 11, 541–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabu, S.L.; SuriyaPrakash, T.N.K.; Kumar, C.D.; SureshKuma, S.; Ragavendran, T. Nutraceuticals: A review. Elixir Int. J. 2012, 46, 8372–8377. [Google Scholar]
- Bhowmik, D.; Kumar, K.P.S.; Paswan, S.; Srivastava, S. Tomato-A Natural Medicine and Its Health Benefits. J. Pharmacogn. Phytochem. 2012, 1, 33–43. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Smith, L.K.; Guentzel, L.J. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Mar. Pollut. Bull. 2010, 60, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.R. Food Science Text Series. 1994. Available online: http://www.springer.com/series/5999 (accessed on 22 April 2020).
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, T.-C.; Chan, M.-W.; Tan, H.-P.; Kwek, C.-L. Functional Food: A Growing Trend among the Health Conscious. Asian Soc. Sci. 2012, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Charter, E. Functional Food Product Development; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 673. [Google Scholar]
- Sikand, G.; Kris-Etherton, P.; Boulos, N.M. Impact of functional foods on prevention of cardiovascular disease and diabetes. Curr. Cardiol. Rep. 2015, 17, 39. [Google Scholar] [CrossRef]
- Umadevi, M.; Pushpa, R.; Sampathkumar, K.; Bhowmik, D. Rice-Traditional Medicinal Plant in India. J. Pharmacogn. Phytochem. 2012, 1, 6–12. [Google Scholar]
- Bhat, F.M.; Riar, C.S. Health Benefits of Traditional Rice Varieties of Temperate Regions. Med. Aromat. Plants 2015, 4, 1000198. [Google Scholar]
- Stevenson, L.; Phillips, F.; O’Sullivan, K.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Prückler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Höltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT Food Sci. Technol. 2014, 56, 211–221. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sohaimy, S.A. Functional foods and nutraceuticals-modern approach to food science. World Appl. Sci. J. 2012, 20, 691–708. [Google Scholar]
- Hasler, C.M. Functional foods: Benefits, concerns and challenges-a position paper from the american council on science and health. J Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [Green Version]
- Wildman, R.E.C.; Bruno, R.S. Handbook of Nutraceuticals and Functional Foods, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; p. 412. [Google Scholar]
- Lee, Y.; Hu, S.; Park, Y.-K.; Lee, J.-Y. Health Benefits of Carotenoids: A Role of Carotenoids in the Prevention of Non-Alcoholic Fatty Liver Disease. Prev. Nutr. Food Sci. 2019, 24, 103–113. [Google Scholar] [CrossRef]
- Shardell, M.D.; Alley, D.E.; Hicks, G.E.; El-Kamary, S.S.; Miller, R.R.; Semba, R.D.; Ferrucci, L. Low-serum carotenoid concentrations and carotenoid interactions predict mortality in US adults: The Third National Health and Nutrition Examination Survey. Nutr Res. 2011, 31, 178–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 141–158. [Google Scholar] [CrossRef]
- Chew, E.; Clemons, T.; SanGiovanni, J.P.; Denis, R.; Ferris, I.I.I.F.; Elman, M.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef]
- Walk, A.M.; Khan, N.A.; Barnett, S.M.; Raine, L.B.; Kramer, A.F.; Cohen, N.J.; Moulton, C.J.; Renzi-Hammond, L.M.; Hammond, B.R.; Hillman, C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int. J. Psychophysiol. 2017, 118, 1–8. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H. Astaxanthin and β-carotene in Helicobacter pylori-induced Gastric Inflammation: A Mini-review on Action Mechanisms. J. Cancer Prev. 2017, 22, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.J.; Lowe, G.L. Carotenoids-Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Li, B. Beneficial Effects of Collagen Hydrolysate: A Review on Recent Developments. J. Sci. Tech. Res. 2017, 1. [Google Scholar] [CrossRef]
- Fan, J.; Zhuang, Y.; Li, B. Effects of Collagen and Collagen Hydrolysate from Jellyfish Umbrella on Histological and Immunity Changes of Mice Photoaging. Nutrients 2013, 5, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Do-Un, K.; Chung, H.-C.; Choi, J.; Sakai, Y.; Boo-Yong, L. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity, and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2018, 10, 826. [Google Scholar]
- Gidley, M.J.; Yakubov, G.E. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’ vs. ‘insoluble’. Trends Food Sci. Technol. 2019, 86, 563–568. [Google Scholar] [CrossRef]
- McRorie, J.W.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.D.; Lupton, J.R. Dietary Fiber. Adv. Nutr. 2011, 2, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.K.; Abraham, B.; El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am. J. Gastroenterol. 2011, 106, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Bae, S.-C.; Song, G.-G. Omega-3 Polyunsaturated Fatty Acids and the Treatment of Rheumatoid Arthritis: A Meta-analysis. Arch. Med. Res. 2012, 43, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012, 6, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lust, J. The Herb Book: The Most Complete Catalog of Herbs Ever Published; Courier Corporation: North Chelmsford, MA, USA, 2014; p. 642. [Google Scholar]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Borkar, N.; Saurabh, S.; Rathore, K.; Pandit, A.; Khandelwal, K. An Insight on Nutraceuticals. PharmaTutor 2015, 3, 13–23. [Google Scholar]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, R. Probiotics: The Scientific Basis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 405. [Google Scholar]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Prebiotics as Functional Foods: A review. J. Funct. Foods 2013, 5, 1542–1553. [Google Scholar] [CrossRef]
- Caetano, B.F.R.; De Moura, N.A.; Almeida, A.P.S.; Dias, M.C.; Sivieri, K.; Barbisan, L.F. Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides. Nutrients 2016, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Gahche, J.J.; Miller, P.E.; Thomas, P.R.; Dwyer, J.T. Why US adults use dietary supplements. JAMA Intern. Med. 2013, 173, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Chauhan, D.; Mehla, K.; Sood, P.; Nair, A. An Overview of Nutraceuticals: Current Scenario. J. Basic Clin. Pharm. 2010, 1, 55–62. [Google Scholar]
- Webb, G.P. Dietary Supplements and Functional Foods; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 297. [Google Scholar]
- Nabarro, L.; Morris-Jones, S.; Moore, D.A.J. 7—Nutrition. In Peter’s Atlas of Tropical Medicine and Parasitology, 7th ed.; Nabarro, L., Morris-Jones, S., Moore, D.A.J., Eds.; Elsevier: London, UK, 2020; pp. 322–332. [Google Scholar]
- Anjali Garg, V.; Dhiman, A.; Dutt, R.; Ranga, S. Health benefits of nutraceuticals. Pharm. Innov. J. 2018, 7, 178–181. [Google Scholar]
- Roadjanakamolson, M.; Suntornsuk, W. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis. J. Microbiol. Biotechnol. 2010, 20, 525–531. [Google Scholar] [PubMed]
- Shekhar, V.; Jha, A.K.; Dangi, J.S. Nutraceuticals: A Re-emerging Health Aid. In Proceedings of the International Conference on Food, Biological and Medical Sciences (FBMS-2014), Bangkok, Thailand, 28–29 January 2014. [Google Scholar]
- Kalra, E.K. Nutraceutical-definition and introduction. AAPS Pharmsci. 2003, 5, 27–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaroopa, G.; Srinath, D. Nutraceuticals and their Health Benefits. Int. J. Pure Appl. Biosci. 2017, 5, 1151–1155. [Google Scholar]
- Sui, X.; Zhang, Y.; Zhou, W. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef]
- Drake, P.M.W.; Szeto, T.H.; Paul, M.J.; Teh, A.Y.-H.; Ma, J.K. Recombinant biologic products versus nutraceuticals from plants—A regulatory choice? Br. J. Clin. Pharmacol. 2017, 83, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, A.N.M. Therapeutic Use of Medicinal Plants and Their Extracts. In Pharmacognosy; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1, p. 554. [Google Scholar]
- Skinner, M.A.; Loh, J.M.S.; Hunter, D.C.; Zhang, J. Gold kiwifruit (Actinidia chinensis ‘Hort16A’) for immune support. Proc. Nutr. Soc. 2011, 70, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Stonehouse, W.; Gammon, C.S.; Beck, K.L.; Conlon, C.A.; von Hurst, P.R.; Kruger, R. Kiwifruit: Our daily prescription for health. Can. J. Physiol. Pharmacol. 2012, 91, 442–447. [Google Scholar] [CrossRef]
- Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.-S.; Kim, S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods 2013, 5, 16–27. [Google Scholar] [CrossRef]
- Latté, K.P.; Appel, K.-E.; Lampen, A. Health benefits and possible risks of broccoli—An overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef]
- Irw Jaswir, I.; Noviendri, D.; Hasrini, R.F.; Octavianti, F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. JMPR 2011, 5, 7119–7131. [Google Scholar] [CrossRef]
- Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013, 4, 4–8. [Google Scholar] [PubMed]
- Kispotta, A.; Srivastava, M.K.; Dutta, M. Free radical scavenging activity of ethanolic extracts and determination of aloin from Aloe vera L. leaf extract. Int. J. Med. Aromat. Plants 2012, 2, 612–618. [Google Scholar]
- Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A Review. Dermatol. Ther. 2018, 8, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.L.; Dodd, K.W.; Gahche, J.J.; Dwyer, J.T.; McDowell, M.A.; Yetley, E.A.; Sempos, C.A.; Burt, V.L.; Radimer, K.L.; Picciano, M.F. Total folate and folic acid intake from foods and dietary supplements in the United States: 2003–2006. Am. J. Clin. Nutr. 2010, 91, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Areco, V.; Rivoira, M.A.; Rodriguez, V.; Marchionatti, A.M.; Carpentieri, A.; de Talamoni, N.T. Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr. Res. Rev. 2015, 28, 83–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Hossein-nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [Green Version]
- Keservani, R.K.; Kesharwani, R.K.; Vyas, N.; Jain, S.; Sharma, A.K. Nutraceutical and Functional Food as Future Food: A Review. Der Pharm. Lett. 2010, 2, 106–116. [Google Scholar]
- Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res. Int. 2014, 55, 247–262. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Golla, U. Emergence of nutraceuticals as the alternative medications for pharmaceuticals. IJCAM 2018, 11, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Dav, G.; Santilli, F.; Patrono, C. Nutraceuticals in Diabetes and Metabolic Syndrome. Cardiovasc. Ther. 2010, 28, 216–226. [Google Scholar] [CrossRef]
- Johnston, T.P.; Korolenko, T.A.; Pirro, M.; Sahebkar, A. Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol. Res. 2017, 120, 219–225. [Google Scholar] [CrossRef]
- Kramer, K.; Hoppe, P.-P.; Packer, L. Nutraceuticals in Health and Disease Prevention; CRC Press: Boca Raton, FL, USA, 2001; p. 340. [Google Scholar]
- Bele, A.A.; Khale, A. An approach to a Nutraceutical. Asian J. Res. Chem. 2013, 6, 1161–1164. [Google Scholar]
- Gupta, S.V.; Pathak, Y.V. Advances in Nutraceutical Applications in Cancer: Recent Research Trends and Clinical Applications; CRC Press LLC: Milton, UK, 2019. [Google Scholar]
- Sarkar, F.H.; Li, Y.; Wang, Z.; Kong, D. The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev. 2010, 29, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mejia, E.G.; Dia, V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev. 2010, 29, 511–528. [Google Scholar] [CrossRef]
- Shukla, Y.; George, J. Combinatorial strategies employing nutraceuticals for cancer development. Ann. N. Y. Acad. Sci. 2011, 1229, 162–175. [Google Scholar] [CrossRef]
- Fathi, N.; Ahmadian, E.; Shahi, S.; Roshangar, L.; Khan, H.; Kouhsoltani, M.; Dizaj, S.M.; Sharifi, S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed. Pharmacother. 2019, 109, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, L.; Faggiano, A.; Colao, A. Vitamin D and Cancer. Front. Endocrinol. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hii, L.-W.; Swee-Hua, E.L.; Leong, C.-O.; Swee-Yee, C.; Tan, N.-P.; Kok-Song, L.; Mai, C.-W. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: Downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC Complement. Altern. Med. 2019, 19. [Google Scholar] [CrossRef] [PubMed]
- Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; et al. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamallat, Y.; Meyiah, A.; Kuugbee, E.D.; Hago, A.M.; Chiwala, G.; Awadasseid, A.; Bamba, D.; Zhang, X.; Shang, X.; Luo, F.; et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed. Pharmacother. 2016, 83, 536–541. [Google Scholar] [CrossRef]
- Kuugbee, E.D.; Shang, X.; Gamallat, Y.; Bamba, D.; Awadasseid, A.; Suliman, M.A.; Zang, S.; Ma, Y.; Chiwala, G.; Xin, Y.; et al. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Dig. Dis. Sci. 2016, 61, 2908–2920. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes. 2013, 4, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Juneja, L.R.; Kapoor, M.P.; Okubo, T.; Rao, T. Green Tea Polyphenols: Nutraceuticals of Modern Life; CRC Press LLC: Boca Raton, FA, USA, 2013. [Google Scholar]
- Lee, P.M.Y.; Ng, C.F.; Liu, Z.M.; Ho, W.M.; Lee, M.K.; Wang, F.; Kan, H.D.; He, Y.H.; Ng, S.S.M.; Wong, S.Y.S.; et al. Reduced prostate cancer risk with green tea and epigallocatechin 3-gallate intake among Hong Kong Chinese men. Prostate Cancer Prostatic Dis. 2017, 20, 318–322. [Google Scholar] [CrossRef]
- Posadino, A.M.; Phu, H.T.; Cossu, A.; Giordo, R.; Fois, M.; Thuan, D.T.B.; Piga, A.; Sotgia, S.; Zinellu, A.; Carru, C.; et al. Oxidative stress-induced Akt downregulation mediates green tea toxicity towards prostate cancer cells. Toxicol. Vitr. 2017, 42, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, F.; Chen, S.; Shi, Y.; Wang, X.; Wang, C.; Meng, Q.-h.; Jiang, C.; Zhu, Z.-y.; Li, C.-H. Green tea polyphenol induces significant cell death in human lung cancer cells. Trop. J. Pharm. Res. 2017, 16, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Leong, H.; Mathur, P.S.; Greene, G.L. Inhibition of mammary tumorigenesis in the C3(1)/SV40 mouse model by green tea. Breast Cancer Res. Treat. 2008, 107, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Fang, S.; Chen, T.; Fang, J.; Mo, Y.; Li, D.; Xiong, S.; Liu, W.; Song, L.; Shen, J.; et al. A novel role of HuR in -Epigallocatechin-3-gallate (EGCG) induces tumour cells apoptosis. J. Cell Mol. Med. 2019, 23, 3767–3771. [Google Scholar] [CrossRef] [Green Version]
- Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008, 269, 199–225. [Google Scholar] [CrossRef]
- Vishvakarma, N.K.; Kumar, A.; Singh, S.M. Role of curcumin-dependent modulation of tumor microenvironment of a murine T cell lymphoma in altered regulation of tumor cell survival. Toxicol. Appl. Pharmacol. 2011, 252, 298–306. [Google Scholar] [CrossRef]
- Akkoç, Y.; Berrak, Ö.; Arısan, E.D.; Obakan, P.; Çoker-Gürkan, A.; Palavan-Ünsal, N. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biomed. Pharmacother. 2015, 71, 161–171. [Google Scholar] [CrossRef]
- Li, Y.; Sun, W.; Han, N.; Zou, Y.; Yin, D. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 2018, 18, 1230. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Kannappan, R.; Reuter, S.; Kim, J.H.; Aggarwal, B.B. Chemosensitization of tumors by resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Chen, K.; Cheng, L.; Yan, B.; Qian, W.; Cao, J.; Li, J.; Wu, E.; Ma, Q.; Yang, W. Resveratrol and cancer treatment: Updates. Ann. N. Y. Acad. Sci. 2017, 1403, 59–69. [Google Scholar] [CrossRef]
- Wu, F.; Cui, L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch. Dermatol. Res. 2017, 309, 823–831. [Google Scholar] [CrossRef]
- Li, W.; Ma, X.; Li, N.; Liu, H.; Dong, Q.; Zhang, J.; Yang, C.; Liu, Y.; Liang, Q.; Zhang, S.; et al. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Exp. Cell Res. 2016, 349, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, S.; Olausson, J.; Lundh, D.; Sögård, P.; Mandal, A.; Holmström, K.-O.; Stahel, A.; Bengtsson, J.; Larsson, D. Vitamin D and prostate cancer: The role of membrane initiated signaling pathways in prostate cancer progression. J. Steroid Biochem. Mol. Biol. 2010, 121, 413–416. [Google Scholar] [CrossRef]
- Lassed, S.; Deus, C.M.; Djebbari, R.; Zama, D.; Oliveira, P.J.; Rizvanov, A.A.; Dahdouh, A.; Benayache, F.; Benayache, S. Protective Effect of Green Tea (Camellia sinensis (L.) Kuntze) against Prostate Cancer: From In Vitro Data to Algerian Patients. Evid. Based Complement Altern. Med. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Gao, Z.-Y.; Li, T.-Q.; Song, W.; Xiao, W.; Zheng, J.; Chen, H.; Chen, G.-H.; Zou, H.-Y. Anti-tumor activity and the mechanism of a green tea (Camellia sinensis) polysaccharide on prostate cancer. Int. J. Biol. Macromol. 2019, 122, 95–103. [Google Scholar] [CrossRef]
- Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett. 2007, 255, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Umesalma, S.; Sudhandiran, G. Differential Inhibitory Effects of the Polyphenol Ellagic Acid on Inflammatory Mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-Dimethylhydrazine-Induced Rat Colon Carcinogenesis. Basic Clin. Pharmacol. Toxicol. 2010, 107, 650–655. [Google Scholar] [CrossRef]
- Akrout, A.; Gonzalez, L.A.; El Jani, H.; Madrid, P.C. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food Chem. Toxicol. 2011, 49, 342–347. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Murthy, K.N.C.; Uckoo, R.M.; Patil, B.S. Chemical composition of volatile oil from Citrus limettioides and their inhibition of colon cancer cell proliferation. Ind. Crops Prod. 2013, 45, 200–207. [Google Scholar] [CrossRef]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, M.; MacManus, S.M.; Jaspars, M.; Trevidu, J.; Nahar, L.; Kong-Thoo-Lin, P.; Sarkere, S.D. Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron 2006, 62, 11172–11177. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, J.-H.; Fang, L. A novel monoterpenoid indole alkaloid with anticancer activity from Melodinus khasianus. Bioorg. Med. Chem. Lett. 2017, 27, 893–896. [Google Scholar] [CrossRef]
- Chang, H.-F.; Yang, L.-L. Gamma-Mangostin, a Micronutrient of Mangosteen Fruit, Induces Apoptosis in Human Colon Cancer Cells. Molecules 2012, 17, 8010–8021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz-langenohl, R.; Fohr, I.; Pietrzik, K. Beneficial role for folate in the prevention of colorectal and breast cancer. Eur. J. Nutr. 2001, 40, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Modem, S.; DiCarlo, S.E.; Reddy, T.R. Fresh Garlic Extract Induces Growth Arrest and Morphological Differentiation of MCF7 Breast Cancer Cells. Genes Cancer 2012, 3, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talib, W.H. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017, 43, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Malaikozhundan, B.; Saravanakumar, K.; Durán-Lara, E.F.; Wang, M.-H.; Vaseeharan, B. Garlic clove extract assisted silver nanoparticle—Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B 2019, 198, 111558. [Google Scholar] [CrossRef]
- Kronski, E.; Fiori, M.E.; Barbieri, O.; Astigiano, S.; Mirisola, V.; Killian, P.H.; Bruno, A.; Pagani, A.; Rovera, F.; Pfeffer, U.; et al. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2. Mol. Oncol. 2014, 8, 581–595. [Google Scholar] [CrossRef] [Green Version]
- Simboli-campbell, M.; Narvaez, C.J.; Vanweelden, K.; Tenniswood, M.; Welsh, J. Comparative effects of 1,25(OH)2D3 and EB1089 on cell cycle kinetics and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 1997, 42, 31–41. [Google Scholar] [CrossRef]
- Wang, Q.; Lee, D.; Sysounthone, V.; Chandraratna, R.A.S.; Christakos, S.; Korah, R.; Wieder, R. 1,25-dihydroxyvitamin D3 and retonic acid analogues induce differentiation in breast cancer cells with function- and cell-specific additive effects. Breast Cancer Res. Treat. 2001, 67, 157–168. [Google Scholar] [CrossRef]
- Zhu, X.; Xiong, L.; Zhang, X.; Shi, N.; Zhang, Y.; Ke, J.; Sun, Z.; Chen, T. Lyophilized strawberries prevent 7,12-dimethylbenz[α]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters. J. Funct. Foods 2015, 15, 476–486. [Google Scholar] [CrossRef]
- Petiwala, S.M.; Johnson, J.J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015, 367, 93–102. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Manoharan, S.; Sindhu, G.; Nirmal, M.R.; Vetrichelvi, V. Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Mol. Cell Biochem. 2012, 369, 17–25. [Google Scholar] [CrossRef]
- Nair, H.B.; Sung, B.; Yadav, V.R.; Kannappan, R.; Chaturvedi, M.M.; Aggarwal, B.B. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem. Pharmacol. 2010, 80, 1833–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Okbi, S.Y. Nutraceuticals of anti-inflammatory activity as complementary therapy for rheumatoid arthritis. Toxicol. Ind. Health 2014, 30, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, R.; Quagliariello, V.; Calabria, D.; Calcagno, V.; De Luca, E.; Iaffaioli, R.V.; Netti, P.A. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. J. Control. Release. 2016, 233, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Sahebkar, A.; Amiri, M.; Davoudi, S.M.; Beiraghdar, F.; Hoseininejad, S.L.; Kolivand, M. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2012, 108, 1272–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijan, M.A.; Lim, B.O. Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: Present status and future trends. World J. Gastroenterol. 2018, 24, 2673–2685. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cruz, M.; del Cruz-Guzmán, O.R.; Almeida-Becerril, T.; Solís-Serna, A.D.; Atilano-Miguel, S.; Sánchez-González, J.R.; Barbosa-Cortés, L.; Ruíz-Cruz, E.D.; Huicochea, J.C.; Cárdenas-Conejo, A.; et al. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial. Clin. Nutr. 2018, 37, 1840–1851. [Google Scholar] [CrossRef]
- Bansal, P.; Gupta, S.K.; Ojha, S.K.; Nandave, M.; Mittal, R.; Kumari, S.; Arya, D.S. Cardioprotective effect of lycopene in the experimental model of myocardial ischemia-reperfusion injury. Mol. Cell. Biochem. 2006, 289, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Goyal, S.; Sharma, C.; Arora, S.; Kumari, S.; Arya, D.S. Cardioprotective effect of lycopene against isoproterenol-induced myocardial infarction in rats. Hum. Exp. Toxicol. 2013, 32, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Srutkova, D.; Schwarzer, M.; Hudcovic, T.; Zakostelska, Z.; Drab, V.; Spanova, A.; Rittich, B.; Kozakova, H.; Schabussova, I. Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly Strain-Specific Manner. PLoS ONE 2015, 10, e0134050. [Google Scholar]
- Sichetti, M.; De Marco, S.; Pagiotti, R.; Traina, G.; Pietrella, D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018, 53, 95–102. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Li, F.; Zhang, D. Dietary fiber intake reduces risk of inflammatory bowel disease: Result from a meta-analysis. Nutr. Res. 2015, 35, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Park, M.; Ji, K.-Y.; Lee, H.-Y.; Jang, J.-H.; Yoon, I.-J.; Oh, S.-S.; Kim, S.-M.; Jeong, Y.-H.; Yun, C.-H.; et al. Bacterial β-(1,3)-glucan prevents DSS-induced IBD by restoring the reduced population of regulatory T cells. Immunobiology 2014, 219, 802–812. [Google Scholar] [CrossRef]
- Cakir, U.; Tayman, C.; Serkant, U.; Yakut, H.I.; Cakir, E.; Ates, U.; Koyuncu, I.; Karaogul, E. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. J. Ethnopharmacol. 2018, 225, 297–308. [Google Scholar] [CrossRef]
- El-Abhar, H.S.; Hammad, L.N.A.; Gawad, H.S.A. Modulating effect of ginger extract on rats with ulcerative colitis. J. Ethnopharmacol. 2008, 118, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Huang, H.; Yu, L.; Whent, M.; Niu, Y.; Shi, H.; Wang, T.T.Y.; Luthria, D.; Charles, D.; Yu, L.L. Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem. 2012, 132, 1442–1450. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. The endocannabinoid system and NGF are involved in the mechanism of action of resveratrol: A multi-target nutraceutical with therapeutic potential in neuropsychiatric disorders. Psychopharmacology 2016, 233, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Feng, L.; Zhang, Z.H.; Jia, X.B. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation. Int. Immunopharmacol. 2014, 23, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Bitto, A.; Minutoli, L.; David, A.; Irrera, N.; Rinaldi, M.; Venuti, F.S.; Squadrito, F.; Altavilla, D. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit. Care 2012, 16, R32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Shang, Y.; Li, M.; Han, X.; Wang, J.; Wang, J. Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin. Exp. Pharmacol. Physiol. 2015, 42, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Algandaby, M.M.; El-halawany, A.M.; Abdallah, H.M.; Alahdal, A.M.; Nagy, A.A.; Ashour, O.M.; Abdel-Naim, A.B. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators. Naunyn Schmiedeberg Arch. Pharmacol. 2016, 389, 419–428. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Guo, B.; Wang, K.; Li, X.; Liang, G. Apigenin protects blood–brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int. Immunopharmacol. 2015, 28, 79–87. [Google Scholar] [CrossRef]
- Zhai, W.; Zhang, Z.; Xu, N.; Guo, Y.; Qiu, C.; Li, C.; Deng, G.Z.; Guo, M.Y. Piperine Plays an Anti-Inflammatory Role in Staphylococcus aureus Endometritis by Inhibiting Activation of NF-κB and MAPK Pathways in Mice. Evid. Based Complement Altern. Med. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Sahu, B.D.; Tatireddy, S.; Koneru, M.; Borkar, R.M.; Kumar, J.M.; Kuncha, M.; Srinivas, R.; Sunder R, S.; Sistla, R. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection. Toxicol. Appl. Pharmacol. 2014, 277, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Feitosa, E.; Okuro, R.T.; Pinho Ribeiro, V.; Lanzetti, M.; Barroso, M.V.; Zin, W.A.; Porto, L.C.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm. Pharmacol. Ther. 2016, 41, 11–18. [Google Scholar] [CrossRef]
- Fonsêca, D.; Salgado, P.; de Aragão Neto, H.; Golzio, A.; Caldas Filho, M.; Melo, C.; Leite, F.; Piuvezam, M.; Pordeus, L.; Barbosa Filho, J.; et al. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int. Immunopharmacol. 2016, 38, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181–17198. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuca, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. Arch. Toxikol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Trachootham, D.; Lu, W.; Ogasawara, M.A.; Valle, N.R.-D.; Huang, P. Redox Regulation of Cell Survival. Antioxid. Redox Signal. 2008, 10, 1343–1374. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L.; et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017, 9, 1477–1536. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. J. Nutr. 2018, 57, 1275–1299. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Antioxidant Potential of Spices and Their Active Constituents. Crit. Rev. Food Sci. Nutr. 2014, 54, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Danwilai, K.; Konmun, J.; Sripanidkulchai, B.; Subongkot, S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Manag. Res. 2017, 9, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Pathak, S.; Patil, K. Antioxidant Nutraceuticals: Preventive and Healthcare Applications, 1st ed.; Taylor & Francis Group: Milton, UK, 2018; p. 428. [Google Scholar]
- Tesoriere, L.; Allegra, M.; Butera, D.; Livrea, M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr. 2004, 80, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Krajka-Kuźniak, V.; Szaefer, H.; Ignatowicz, E.; Adamska, T.; Baer-Dubowska, W. Beetroot juice protects against N-nitrosodiethylamine-induced liver injury in rats. Food Chem. Toxicol. 2012, 50, 2027–2033. [Google Scholar] [CrossRef]
- Coles, L.T.; Clifton, P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Stanisz, E.; Waśkiewicz, A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem. 2017, 221, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 2016, 21, 113–132. [Google Scholar] [CrossRef]
- Hernández-Alonso, P.; Bulló, M.; Salas-Salvadó, J. Pistachios for Health. Nutr. Today 2016, 51, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113, S79–S93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolling, B.W.; Chen, C.-Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Houston, M.C. Treatment of hypertension with nutraceuticals, vitamins, antioxidants and minerals. Expert Rev. Cardiovasc. Ther. 2007, 5, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Riccioni, G.; Gammone, M.A.; Currenti, W.; D’Orazio, N. Effectiveness and Safety of Dietetic Supplementation of a New Nutraceutical on Lipid Profile and Serum Inflammation Biomarkers in Hypercholesterolemic Patients. Molecules 2018, 23, 1168. [Google Scholar] [CrossRef] [Green Version]
- Lyseng-Williamson, K.A. Ezetimibe/Simvastatin: A Guide to its Clinical Use in Hypercholesterolemia. Am. J. Cardiovasc. Drugs 2012, 12, 49–56. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Arch. Med. Sci. 2017, 13, 965–1005. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.W.; Hang, J.; Dussault, P.H.; Carr, T.P. Phytosterol Ester Constituents Affect Micellar Cholesterol Solubility in Model Bile. Lipids 2010, 45, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; Koppenol, W.P.; Jong, A.; de Hiemstra, H.; Vermeer, M.A.; Noakes, M.; Luscombe-Marsh, N.D. Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes; a randomized, double-blind, placebo-controlled study. Nutr. Diabetes 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir Shaghaghi, M.; Harding, S.V.; Jones, P.J.H. Water dispersible plant sterol formulation shows improved effect on lipid profile compared to plant sterol esters. J. Funct. Foods 2014, 6, 280–289. [Google Scholar] [CrossRef]
- Malina, D.M.T.; Fonseca, F.A.; Barbosa, S.A.; Kasmas, S.H.; Machado, V.A.; França, C.N.; Borges, N.C.; Moreno, R.A.; Izar, M.C. Additive effects of plant sterols supplementation in addition to different lipid-lowering regimens. J. Clin. Lipidol. 2015, 9, 542–552. [Google Scholar] [CrossRef]
- Becker, D.J.; Gordon, R.Y.; Halbert, S.C.; French, B.; Morris, P.B.; Rader, D.J. Red yeast rice for dyslipidemia in statin-intolerant patients: A randomized trial. Ann. Intern. Med. 2009, 150, 830. [Google Scholar] [CrossRef]
- Verhoeven, V.; Van der Auwera, A.; Van Gaal, L.; Remmen, R.; Apers, S.; Stalpaert, M.; Wens, J.; Hermans, N. Can red yeast rice and olive extract improve lipid profile and cardiovascular risk in metabolic syndrome? A double blind, placebo controlled randomized trial. BMC Complement Altern. Med. 2015, 15, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.W.; Mousa, S.A. The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complement Ther. Med. 2012, 20, 466–474. [Google Scholar] [CrossRef]
- Biagi, M.; Minoretti, P.; Bertona, M.; Emanuele, E. Effects of a nutraceutical combination of fermented red rice, liposomal berberine, and curcumin on lipid and inflammatory parameters in patients with mild-to-moderate hypercholesterolemia: An 8-week, open-label, single-arm pilot study. Arch. Med. Sci. Atheroscler. Dis. 2018, 3, e137–e141. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Cao, X.; Wen, Q.; Chen, Z.; Cheng, Z.; Huang, X.; Zhang, Y.; Long, C.; Zhang, Y.; Huang, Z. An overview of the bioactivity of monacolin K/lovastatin. Food Chem. Toxicol. 2019, 131, 110585. [Google Scholar] [CrossRef] [PubMed]
- Surampudi, P.; Enkhmaa, B.; Anuurad, E.; Berglund, L. Lipid Lowering with Soluble Dietary Fiber. Curr. Atheroscler. Rep. 2016, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 2015, 243, 449–461. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 2010, 4, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Anadón, A.; Martínez-Larrañaga, M.R.; Ares, I.; Martínez, M.A. Interactions between Nutraceuticals/Nutrients and Therapeutic Drugs. In Nutraceuticals, 1st ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gul, K.; Singh, A.K.; Jabeen, R. Nutraceuticals and Functional Foods: The Foods for the Future World. Crit. Rev. Food Sci. Nutr. 2016, 56, 2617–2627. [Google Scholar] [CrossRef]
- Gil, F.; Hernández, A.F.; Martín-Domingo, M.C. Toxic Contamination of Nutraceuticals and Food Ingredients. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gupta, R.C.; Srivastava, A.; Lall, R. Toxicity Potential of Nutraceuticals. In Computational Toxicology: Methods and Protocols (Methods in Molecular Biology); Nicolotti, O., Ed.; Springer: New York, NY, USA, 2018; pp. 367–394. [Google Scholar] [CrossRef]
- Gupta, R.C. Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Cambridge, MA, USA, 2016; p. 1042. [Google Scholar]
- Girdhar, S.; Pandita, D.; Girdhar, A.; Lather, V. Safety, Quality and Regulatory Aspects of Nutraceuticals. Appl. Clin. Res. Clin. Trials Regul. Aff. 2017, 4, 36–42. [Google Scholar] [CrossRef]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Aloe vera: A review of toxicity and adverse clinical effects. J. Environ. Sci. Health C 2016, 34, 77–96. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Mellick, P.W.; Olson, G.R.; Felton, R.P.; Thorn, B.T.; Beland, F.A. Toxicology and carcinogenesis studies of a nondecolorized [corrected] whole leaf extract of Aloe barbadensis Miller (Aloe vera) in F344/N rats and B6C3F1 mice (drinking water study). Natl. Toxicol. Program. Tech. Rep. Ser. 2013, 577, 1–266. [Google Scholar]
- Pandiri, A.R.; Sills, R.C.; Hoenerhoff, M.J.; Peddada, S.D.; Ton, T.-V.T.; Hong, H.-H.L.; Flake, G.P.; Malarkey, D.E.; Olson, G.R.; Pogribny, I.P.; et al. Aloe vera Non-Decolorized Whole Leaf Extract-Induced Large Intestinal Tumors in F344 Rats Share Similar Molecular Pathways with Human Sporadic Colorectal Tumors. Toxicol. Pathol. 2011, 39, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Shao, A.; Broadmeadow, A.; Goddard, G.; Bejar, E.; Frankos, V. Safety of purified decolorized (low anthraquinone) whole leaf Aloe vera (L) Burm. f. juice in a 3-month drinking water toxicity study in F344 rats. Food Chem. Toxicol. 2013, 57, 21–31. [Google Scholar] [CrossRef]
- Williams, L.D.; Burdock, G.A.; Shin, E.; Kim, S.; Jo, T.H.; Jones, K.N.; Matulka, R.A. Safety studies conducted on a proprietary high-purity Aloe vera inner leaf fillet preparation, Qmatrix®. Reg. Toxicol. Pharmacol. 2010, 57, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, I.; Winters, W.D.; Scott, M.; Kousoulas, K. An in vitro and in vivo toxicologic evaluation of a stabilized Aloe vera gel supplement drink in mice. Food Chem. Toxicol. 2013, 55, 363–370. [Google Scholar] [CrossRef]
- Paes-Leme, A.A.; Motta, E.S.; De Mattos, J.C.P.; Dantas, F.J.S.; Bezerra, R.J.A.C.; Caldeira-de-Araujo, A. Assessment of Aloe vera (L.) genotoxic potential on Escherichia coli and plasmid DNA. J. Ethnopharmacol. 2005, 102, 197–201. [Google Scholar] [CrossRef]
- Chiang, J.-H.; Yang, J.-S.; Ma, C.-Y.; Yang, M.-D.; Huang, H.-Y.; Hsia, T.-C.; Kuo, H.-M.; Wu, P.-P.; Lee, T.-H.; Chung, J.-G. Danthron, an Anthraquinone Derivative, Induces DNA Damage and Caspase Cascades-Mediated Apoptosis in SNU-1 Human Gastric Cancer Cells through Mitochondrial Permeability Transition Pores and Bax-Triggered Pathways. Chem. Res. Toxicol. 2011, 24, 20–29. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Ntp Technical Report on the Toxicology and Carcinogenesis Studies of Ginkgo Biloba Extract (cas No. 90045-36-6) in F344/N Rats and B6c3f1/N Mice (Gavage Studies); Technical Report Series; U.S. Public Health Service; National Toxicology Program: Research Triangle Park, NC, USA, 2013; pp. 1–183. [Google Scholar]
- Lin, H.; Guo, X.; Zhang, S.; Dial, S.L.; Guo, L.; Manjanatha, M.G.; Moore, M.M.; Mei, N. Mechanistic Evaluation of Ginkgo biloba Leaf Extract-Induced Genotoxicity in L5178Y Cells. Toxicol. Sci. 2014, 139, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Maeda, J.; Kijima, A.; Inoue, K.; Ishii, Y.; Ichimura, R.; Takasu, S.; Kuroda, K.; Matsushita, K.; Kodama, Y.; Saito, N.; et al. In Vivo Genotoxicity of Ginkgo Biloba Extract in gpt Delta Mice and Constitutive Androstane Receptor Knockout Mice. Toxicol. Sci. 2014, 140, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resende, F.A.; Vilegas, W.; Dos Santos, L.C.; Varanda, E.A. Mutagenicity of Flavonoids Assayed by Bacterial Reverse Mutation (Ames) Test. Molecules 2012, 17, 5255–5268. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Toxicology and Carcinogenesis Studies of Goldenseal Root Powder (Hydrastis canadensis) in F344/N Rats and B6c3f1 Mice (Feed Studies); Technical Report Series; National Toxicology Program; U.S. Public Health Service; National Toxicology Program: Research Triangle Park, NC, USA, 2010; pp. 1–188. [Google Scholar]
- Chen, S.; Wan, L.; Couch, L.; Lin, H.; Li, Y.; Dobrovolsky, V.N.; Mei, N.; Guo, L. Mechanism study of goldenseal-associated DNA damage. Toxicol. Lett. 2013, 221, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, A.M.; Umukoro, S.; Ben-Azu, B.; Adzu, B.; Ademowo, O.G. Toxicity and Protective Effect of Phenolic-Enriched Ethylacetate Fraction of Ocimum gratissimum (Linn.) Leaf against Acute Inflammation and Oxidative Stress in Rats. Drug Dev. Res. 2017, 78, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Arslan Burnaz, N.; Küçük, M.; Akar, Z. An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J. Chromatogr. B 2017, 1052, 66–72. [Google Scholar] [CrossRef]
- Gulati, K.; Anand, R.; Ray, A. Nutraceuticals as Adaptogens: Their Role in Health and Disease. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sobrinho, A.P.; Minho, A.S.; Ferreira, L.L.C.; Martins, G.R.; Boylan, F.; Fernandes, P.D. Characterization of anti-inflammatory effect and possible mechanism of action of Tibouchina granulosa. J. Pharm. Phramacol. 2017, 69, 706–713. [Google Scholar] [CrossRef]
- Wang, K. Adverse Reaction Prediction and Pharmacovigilance of Nutraceuticals: Examples of Computational and Statistical Analysis on Big Data. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gonçalves, R.F.S.; Martins, J.T.; Duarte, C.M.M.; Vicente, A.A.; Pinheiro, A.C. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol. 2018, 78, 270–291. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.D. Noninvasive In Vivo Optical Imaging Models for Safety and Toxicity Testing. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Barnett, R.E.; Bailey, D.C.; Hatfield, H.E.; Fitsanakis, V.A. Caenorhabditis elegans: A Model Organism for Nutraceutical Safety and Toxicity Evaluation. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bian, W.-P.; Pei, D.-S. Zebrafish Model for Safety and Toxicity Testing of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Krishna, G.; Gopalakrishnan, G. Alternative In Vitro Models for Safety and Toxicity Evaluation of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gonzalez-Suarez, I.; Martin, F.; Hoeng, J.; Peitsch, M.C. Mechanistic Network Models in Safety and Toxicity Evaluation of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kadakkuzha, B.M.; Liu, X.; Swarnkar, S.; Chen, Y. Genomic and Proteomic Mechanisms and Models in Toxicity and Safety Evaluation of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Mouly, S.; Lloret-Linares, C.; Sellier, P.-O.; Sene, D.; Bergmann, J.-F. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John’s Wort? Pharmacol. Res. 2017, 118, 82–92. [Google Scholar] [CrossRef]
- Mooiman, K.D.; Maas-Bakker, R.F.; Hendrikx, J.J.M.A.; Bank, P.C.D.; Rosing, H.; Beijnen, J.H.; Schellens, J.H.M.; Meijerman, I. The effect of complementary and alternative medicines on CYP3A4-mediated metabolism of three different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin, midazolam and docetaxel. J. Pharm. Phramacol. 2014, 66, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-A.; Lee, H.; Kim, D.; Jung, B.H. Development of GC-MS based cytochrome P450 assay for the investigation of multi-herb interaction. Anal. Biochem. 2017, 519, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sparreboom, A. Predicting transporter-mediated drug interactions: Commentary on: “Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin” and “Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A”. Clin. Pharmacol. Ther. 2017, 101, 447–449. [Google Scholar]
- Gaudineau, C.; Beckerman, R.; Welbourn, S.; Auclair, K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem. Biophys. Res. Commun. 2004, 318, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Zhang, H.; Xie, L.; Chen, J.; Zhou, S.; Zhang, J.; Lv, J.; Hao, W.; Ma, Y.; Liu, Y.; et al. Pharmacokinetics of ginkgolides A, B and K after single and multiple intravenous infusions and their interactions with midazolam in healthy Chinese male subjects. Eur. J. Clin. Pharmacol. 2017, 73, 537–546. [Google Scholar] [CrossRef]
- Unger, M.; Frank, A. Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction. Rapid Commun. Mass Spetrom. 2004, 18, 2273–2281. [Google Scholar] [CrossRef]
- Dürr, D.; Stieger, B.; Kullak-Ublick, G.A.; Rentsch, K.M.; Steinert, H.C.; Meier, P.J.; Fattinger, K. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. 2000, 68, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Goey, A.K.L.; Mooiman, K.D.; Beijnen, J.H.; Schellens, J.H.M.; Meijerman, I. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb–drug interactions in cancer patients. Cancer Treat. Rev. 2013, 39, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Dormán, G.; Flachner, B.; Hajdú, I.; András, C.D. Target Identification and Polypharmacology of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Herr, M.; Grondin, H.; Sanchez, S.; Armaingaud, D.; Blochet, C.; Vial, A.; Denormandie, P.; Ankri, J. Polypharmacy and potentially inappropriate medications: A cross-sectional analysis among 451 nursing homes in France. Eur. J. Clin. Pharmacol. 2017, 73, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, W.; Sun, Y.; Guo, X.; Huang, W.; Peng, Y.; Zheng, J. Comparative Study of Hepatotoxicity of Pyrrolizidine Alkaloids Retrorsine and Monocrotaline. Chem. Res. Toxicol. 2017, 30, 532–539. [Google Scholar] [CrossRef]
- Merz, K.-H.; Schrenk, D. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol. Lett. 2016, 263, 44–57. [Google Scholar] [CrossRef]
- Panter, K.E.; Welch, K.D.; Gardner, D.R. Poisonous Plants: Biomarkers for Diagnosis. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Preliasco, M.; Gardner, D.; Moraes, J.; González, A.C.; Uriarte, G.; Rivero, R. Senecio grisebachii Baker: Pyrrolizidine alkaloids and experimental poisoning in calves. Toxicon 2017, 133, 68–73. [Google Scholar] [CrossRef]
- Dlugaszewska, J.; Ratajczak, M.; Kamińska, D.; Gajecka, M. Are dietary supplements containing plant-derived ingredients safe microbiologically? Saudi Pharm. J. 2019, 27, 240–245. [Google Scholar] [CrossRef]
- Bugno, A.; Almodovar, A.A.B.; Pereira, T.C.; Pinto, T. de, J.A.; Sabino, M. Occurrence of toxigenic fungi in herbal drugs. Braz. J. Microbiol. 2006, 37, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Prado, G.; Altoé, A.F.; Gomes, T.C.B.; Leal, A.S.; Morais, V.A.D.; Oliveira, M.S.; Ferreira, M.B.; Gomes, M.B.; Paschoal, F.N.; Souza, R.V.S.; et al. Occurrence of aflatoxin B1 in natural products. Braz. J. Microbiol. 2012, 43, 1428–1435. [Google Scholar] [CrossRef] [Green Version]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of Heavy Metals in Selected Medicinal Plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2011; pp. 63–86. [Google Scholar] [CrossRef]
- Tong, M.; Gao, W.; Jiao, W.; Zhou, J.; Li, Y.; He, L.; Hou, R. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.). J. Agric. Food Chem. 2017, 65, 7638–7646. [Google Scholar] [CrossRef]
- Hasler, C.M. Regulation of Functional Foods and Nutraceuticals: A Global Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2005; p. 425. [Google Scholar]
- Jacobo-Velázquez, D.A.; del Rosario Cuéllar-Villarreal, M.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Ramos-Parra, P.A.; Hernández-Brenes, C. Nonthermal processing technologies as elicitors to induce the biosynthesis and, accumulation of nutraceuticals in plant foods. Trends Food Sci. Technol. 2017, 60, 80–87. [Google Scholar] [CrossRef]
- Del Cuéllar-Villarreal, M.R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol. Technol. 2016, 119, 18–26. [Google Scholar] [CrossRef]
- Wu, J.; Lin, L. Ultrasound-Induced Stress Responses of Panax ginsengCells: Enzymatic Browning and Phenolics Production. Biotechnol. Prog. 2002, 18, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Engeseth, N.J.; Feng, H. High Intensity Ultrasound as an Abiotic Elicitor—Effects on Antioxidant Capacity and Overall Quality of Romaine Lettuce. Food Bioprocess Technol. 2016, 9, 262–273. [Google Scholar] [CrossRef]
- Ortega, V.G.; Ramírez, J.A.; Velázquez, G.; Tovar, B.; Mata, M.; Montalvo, E. Effect of high hydrostatic pressure on antioxidant content of “Ataulfo” mango during postharvest maturation. Food Sci. Technol. 2013, 33, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.G.; Dejmek, P.; Lundgren, K.; Rasmusson, A.G.; Vicente, A.; Moritz, T. Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta 2009, 230, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Anita, S.; Mangesh, T.; Prasad, V.S.; SinghMeera, C. Nutraceuticals-Global Status and Applications: A Review. 2013. Available online: https://www.semanticscholar.org/paper/Nutraceuticals-Global-status-and-applications-%3A-a-Anita-Mangesh/a1e4ce0f21e585b554e86b203f3bd8166b1cb112 (accessed on 21 May 2020).
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Brower, V. A nutraceutical a day may keep the doctor away. EMBO Rep. 2005, 6, 708–711. [Google Scholar] [CrossRef] [Green Version]
- Mechanick, J.I.; Brett, E.M. Nutrition and the chronically critically ill patient. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 33–39. [Google Scholar] [CrossRef]
- Blades, M. Functional foods or nutraceuticals. Nutr. Food Sci. 2000, 30, 73–76. [Google Scholar] [CrossRef]
- Pandey, M.; Verma, R.K.; Saraf, S.A. Nutraceuticals: New era of medicine and health. Asian J. Pharm. Clin. Res. 2010, 3, 6. [Google Scholar]
- Rudra, S.G.; Nishad, J.; Jakhar, N.; Kaur, C. Food Industry Waste: Mine of Nutraceuticals. Int. J. Sci. 2015, 4, 205–229. [Google Scholar]
- Camacho, F.; Macedo, A.; Malcata, F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, M.J.A. (Ed.) Food Additives, Functional Food Ingredients and Food Contaminants. In Food Quality and Consumer Value: Delivering Food That Satisfies; Springer: Berlin/Heidelberg, Germany, 2003; pp. 167–196. [Google Scholar] [CrossRef]
Type of Cancer | Mode of Action | Nutraceutical | References |
---|---|---|---|
Prostate cancer | Antiproliferation, cell cycle inhibition, angiogenesis inhibition and promotion of apoptosis | Vitamin D | [117] |
Antioxidation, antiproliferation, and promotion of apoptosis | Catechins in green tea | [118,119] | |
Colon cancer | Tumor marker suppression, promotion of apoptosis, metastasis inhibition, and antiproliferation | Polyphenols | [120,121] |
Antioxidant, antiproliferation, promotion of apoptosis, inflammatory protein inhibition | Terpenoids | [122,123] | |
Autophagy induction and promotion of apoptosis | Alkaloids | [124,125,126] | |
Induction of DNA hypomethylation, promotion of apoptosis, and antiproliferation | Micronutrients | [127,128] | |
Breast cancer | Antiproliferation, angiogenesis inhibition, and promotion of apoptosis | Allicin in garlic | [129,130,131] |
Antiproliferation and promotion of apoptosis | Curcumin | [132] | |
Cell cycle inhibition, promotion of apoptosis, and inhibition of metastasis | Vitamin D | [133,134] | |
Oral cancer | Prevent tumor initiation | Strawberry | [127] |
Antioxidation | Rosemary | [128] | |
Antiproliferation, promotion of apoptosis, and angiogenesis inhibition | Geraniol | [135] |
Mode of Action | Nutraceutical | Benefits | Reference |
---|---|---|---|
Reduce nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), production of nitric oxide (NO), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB) | Resveratrol | Neuroprotective | [153] |
Inhibit the activation of NF-κB and limits the inflammatory response, such as ICAM-1, MCP-1, Cox-2, TNF-α, IL-1β, and IL-6 | Baicalin | Improvement of trinitrobenzene sulphonic acid (TNBS) induced colitis | [154] |
Reduce the expression of TNF-α, COX-2, 5-LOX, and IL-6 and increase IL-10 levels | Flavocoxid | Protects from sepsis | [155] |
Reduces the expression of TNFα, IL-1β and reduces myeloperoxidase (MPO) activity | Curcumin | Improve dextran sulfate sodium (DSS)-induced colitis | [156] |
Decreases the expression of iNOS and COX-2 | 6-Gingerol | Protects from carbon tetrachloride (CCl4)-induced liver fibrosis | [157] |
Inhibits the expression of TLR4 and NF-κB and suppress iNOS, COX-2, TNF-α, IL-6, and IL-1β | Apigenin | Protects against blood-brain barrier disruption | [158] |
Reduced the expression of TNF-α, IL-1β, and IL-6 and increases IL-10 expression. Decreases TLR-2 and TLR-4 expression Inhibits phosphorylation of I-κB, p65, p38, ERK, and JNK | Piperine | Reduces inflammatory injury in Staphylococcus aureus endometritis. | [159] |
Suppresses the activity of renal MPO | Naringin | Decreases neutrophil infiltration in the kidneys. | [160] |
Reduces NF-kappa B p65 subunit activation which decreases inflammatory cells and reduces cytokine secretion | Eucalyptol | Potential agent in the treatment of cigarette smoke-induced acute lung inflammation. | [161] |
Suppresses NF-kB and p38 and reduces the level of TNF-α and IL-1β levels | Ortho-eugenol | Treatment of pain and inflammation. | [162] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlAli, M.; Alqubaisy, M.; Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. https://doi.org/10.3390/molecules26092540
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai K-S, Lim S-HE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules. 2021; 26(9):2540. https://doi.org/10.3390/molecules26092540
Chicago/Turabian StyleAlAli, Mudhi, Maream Alqubaisy, Mariam Nasser Aljaafari, Asma Obaid AlAli, Laila Baqais, Aidin Molouki, Aisha Abushelaibi, Kok-Song Lai, and Swee-Hua Erin Lim. 2021. "Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations" Molecules 26, no. 9: 2540. https://doi.org/10.3390/molecules26092540
APA StyleAlAli, M., Alqubaisy, M., Aljaafari, M. N., AlAli, A. O., Baqais, L., Molouki, A., Abushelaibi, A., Lai, K. -S., & Lim, S. -H. E. (2021). Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules, 26(9), 2540. https://doi.org/10.3390/molecules26092540