Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Kefir Grains
4.2. Preparation of Kefir Beverage (KB)
4.3. Microbial Test Strains
4.4. Instrumental Analysis of KB
4.5. Isolation and Characterization of Probiotic Microorganisms from the KB
4.6. Preparation of Fruit Juices
4.7. Bioassay of the Kefir Beverage (KB)
4.8. Inhibition of Both S. aureus and Sal. typhimurium in BHI Broth and Juices of Apple, Guava, Strawberry and Tomato
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enan, G.; El-Essawy, A.A.; Uyttendaele, M.; Debevere, J. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: Characterization, production and bactericidal action of plantaricin UG1. Int. J. Food Microbiol. 1996, 30, 189–215. [Google Scholar] [CrossRef]
- Enan, G.; Abdel-Shafi, S.; Abdel-Haliem, M.F.; Negm, S. Characterization of probiotic lactic acid bacteria to be used as starter and protective cultures for dairy fermentations. Int. J. Probiotics Prebiotics 2013, 8, 157–163. [Google Scholar]
- Enan, G.; Abdel-Shafi, S.; Ouda, S.; Negm, S. Novel antibacterial activity of lactococcus lactis subsp. Lactis Z11 isolated from zabady. Int. J. Biomed. Sci. 2013, 9, 174–180. [Google Scholar]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, B. Chemical and microbiological characteristics of kefir grains and their fermented dairy products: A review. Cognet Food Agric. 2016, 2, 1272152. [Google Scholar] [CrossRef]
- Diosma, G.; Romanin, D.E.; Rey-Burusco, M.F.; Londero, A.; Garrote, G.L. Yeasts from kefir grains: Isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 2014, 30, 43–53. [Google Scholar] [CrossRef]
- Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Negm, S.; Enan, G. Antibacterial activity of Lactobacillus delbreukii subspecies bulgaricus isolated from Zabady. Life Sci. J. 2014, 11, 264–270. [Google Scholar]
- Ouda, S.M.; Debevere, J.; Enan, G. Purification and biochemical characterization of plantiricin UG1: A bacteriocin produced by Lactobacillus plantarum UG1 isolated from dry sausage. Life Sci. J. 2014, 11, 271–279. [Google Scholar]
- Enan, G.; Abo-El-Khair, I.A.; Abdel-Shafi, S.; Al-Mohammadi, A.-R. Evaluation of the use of Enterococcus faecium NM2 as a probiotic for inhibition of some urogenital pathogens. J. Food Agric. Environ. 2015, 13, 2–7. [Google Scholar]
- Enan, G.; Abdel-Shafi, S.; Ouda, S.M.; El-Balat, I. Genetic linkage of the antibiotic resistance ability in the Escherichia coli UR4 strain isolated from urine. J. Med. Sci. 2013, 13, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Ismaiel, A.A.; Ali, A.E.; Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 2014, 23, 179–185. [Google Scholar] [CrossRef]
- Reda, F.M.; Hussein, B.M.; Enan, G. Selection and characterization of two probiotic lactic acid bacteria strains to be used as starter and protective cultures for food fermentations. J. Pure Appl. Microbiol. 2018, 12, 1499–1513. [Google Scholar] [CrossRef]
- Osman, A.; El-Didamony, G.; Sitohy, M.; Khalifa, M.; Enan, G. Soybean glycinin basic subunit inhibits methicillin resistant- vancomycin intermediate Staphylococcus aureus (MRSA-VISA) in vitro. Int. J. Appl. Res. Nat. Prod. 2016, 9, 17–26. [Google Scholar]
- Abdel-Shafi, S.; Osman, A.; Enan, G.; El-Nemer, M.; Sitohy, M. Antibacterial activity of methylated egg white proteins against pathogenic G+ and G- bacteria matching antibiotics. SpringerPlus 2016, 5, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Osman, A.; Enan, G.; Abdel- Hameid, S.; Sitohy, M. characterization and antibacterial activity of 75 and 115 globulins isolated from cowpea seed protein. Molecules 2019, 24, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Hamdi, S.; Moustafa, A.H.; Enan, G. Biological characterization and inhibition of Streptococcus pyogenes ZUH1 causing chronic cystitis by crocus sativus methanol extract, bee honey alone or in combination with antibiotics: An in vitro study. Molecules 2019, 24, 2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafi, S.; Osman, A.; Al-Mohammadi, A.-R.; Kamal, N.; Sitohy, M. Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int. J. Biol. Macromol. 2019, 138, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Enan, G.; Sitohy, M. Catfish glycoprotein, a highly powerful safe preservative of minced beef stored at 4 °C for 15 days. Foods 2020, 9, 1115. [Google Scholar] [CrossRef]
- Osman, A.; Bin-Jumah, M.; Abd El-Hack, M.; Elaraby, G.; Swelum, A.A.; Taha, A.E.; Sitohy, M.; Allam, A.A.; Ashour, E.A. Dietary supplementation of soybean glycinin can alter the growth, carcases traits, blood biochemical indices, and meat quality of broilers. Poult. Sci. 2020, 99, 820–828. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Kim, H.; Kang, I.B.; Chon, J.W.; Song, K.Y.; Seo, K.H. Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean J. Food Sci. 2016, 36, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.M.; Crispie, F.; Kilcawley, K.; O’Sullivan, O.; O’Sullivan, M.G.; Claesson, M.J.; Cotter, P.D. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir. mSystems 2016, 1, e00052-16. [Google Scholar] [CrossRef] [Green Version]
- Fontán, M.C.G.; Martínez, S.; Franco, I.; Carballo, J. Microbiological and chemical changes during the manufacture of Kefir made from cows’ milk, using a commercial starter culture. Int. J. Dairy 2006, 16, 762–767. [Google Scholar] [CrossRef]
- Serafini, F.; Turroni, F.; Ruas-Madiedo, P.; Lugli, G.A.; Milani, C.; Duranti, S.; Zamboni, N.; Bottacini, F.; van Sinderen, D.; Margolles, A.; et al. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int. J. Food Microbiol. 2014, 175, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Garrote, G.L.; Abraham, A.G.; DeAntoni, G.L. Microbial Interactions in Kefir: A Natural Probiotic Drink. In Biotechnology of Lactic Acid Bacteria; Mozzi, F., Raya, R.R., Vignolo, G.M., Eds.; Wiley-Blackwell: Ames, IO, USA, 2010; pp. 327–340. [Google Scholar]
- Farnworth, E.R.; Mainville, I. Kefir—A fermented milk product. In Handbook of Fermented Functional Foods, 2nd ed.; Farnworth, E.R., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 89–127. [Google Scholar]
- Lopitz-Otsoa, F.; Rementeria, A.; Elguezabal, N.; Garaizar, J. Kefir: A symbiotic yeasts-bacteria community with alleged heal-thy capabilities. Rev. Iberoam. Micol. 2006, 23, 67–74. [Google Scholar] [CrossRef]
- Loretan, T.; Mostert, J.F.; Viljoen, B.C. Microbial floral associated with South African household kefir. S. Afr. J. Sci. 2003, 99, 92–95. [Google Scholar]
- Chen, H.-S.; Wang, S.-Y.; Chen, M.-J. Microbiological study of lactic acid bacteria in kefir grains by cultured-dependent and cultured independent methods. Food Microbiol. 2008, 25, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A. A review: Chemical, microbiological and nutritional characteristics of kefir. Cyta. J. Food 2015, 13, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, K.T.; Pereira, G.V.M.; Campos, C.R.; Dragone, G.; Schwan, R.F. Brazilian kefir: Structure, microbial communities and chemical composition. Braz. J. Microbiol. 2011, 42, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, K.L.; Caputo, L.R.G.; Carvalho, J.C.T.; Evangelista, J.; Schneedorf, J.M. Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. Agents 2005, 25, 404–408. [Google Scholar] [CrossRef]
- Taylor, G.R.J.; Williams, C.M. Effects of probiotics and prebiotics on blood lipids. Br. Food J. 1998, 80, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Zhu, X.; Suzuki, S.; Suzuki, K.; Kitamura, S. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B(T). J. Agric. Food Chem. 2004, 52, 5533–5538. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Ahn, K.-S.; Kwon, O.-K.; Kim, M.-K.; Lee, I.-Y.; Oh, S.-R.; Lee, H.-K. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology 2007, 212, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.R.; Chen, M.J.; Lin, C.W. Antimutagenic and anti-oxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 2005, 53, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gu, F.; Ruan, H.; Chen, Q.; He, J.; He, G. Induction of apoptosis of gastric cancer cells SGC7901 in vitro by a cell-free fraction of Tibetan kefir. Int. Dairy J. 2013, 30, 14–18. [Google Scholar] [CrossRef]
- Enan, G.; Abdel-Haliem, M.E.F.; Tartour, E. Evaluation of the antimicrobial activity, starter capability and technological properties of some probiotic bacteria isolated from Egyptian pickles. Life Sci. J. 2014, 11, 976–985. [Google Scholar]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Parveen Rani, R. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014, 2014, 50424. [Google Scholar] [CrossRef]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Güzel-Seydim, Z.B.; Seydim, A.C.; Greene, A.K.; Bodine, A.B. Determination of organic acids and volatile flavor substances in kefir during fermentation. J. Food Compos. Anal. 2000, 13, 35–43. [Google Scholar] [CrossRef]
- Rattray, F.P.; O’Connell, M.J. Fermented milks kefir. In Encyclopedia of Dairy Sciences, 2nd ed.; Fukay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 518–524. [Google Scholar]
- Oties, S.; Cagindi, O. Kefir: A probiotic dairy-composition, nutritional and therapeutic aspects. Pak. J. Nutr. 2003, 2, 54–59. [Google Scholar]
- Fiorda, F.A.; Pereira, G.V.D.M.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.B.; Vandenberghe, L.P.D.S.; Soccol, C.R. Microbiological, biochemical, and functional aspects of sugary kefir fermentation—A review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Kalra, E.K. Nutraceutical-definition and in-troduction. AAPS Pharmsci. 2003, 5, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palthur, M.P.; Palthur, S.S.; Chitta, S.K. Nutraceu-ticals: A conceptual definition. Int. J. Pharm Sci. 2010, 2, 19–27. [Google Scholar]
- Enan, G.; Al-Mohammadi, A.-R.; El-Didamony, C.; Abdel-Haliem, M.E.F.; Zakaria, A. Antimicrobial activity of Enterococcus faecium NM2 isolated from urine: Purification, Characterization and bacterial action of enterocin NM2. Asian J. Appl. Sci. 2014, 7, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Ismaiel, A.A.; Ghaly, M.F.; El-Naggar, A.K. Milk kefir: Ultrastructure, antimicrobial activity and efficacy on aflatoxin b1 production by Aspergillus flavus. Curr. Microbiol. 2011, 62, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015, 6, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, P.S.; Maciel, M.I.; Bueno, L.A.; Marques Mde, F.; Marques, D.N.; Sarmento Silva, T.M. Characterization of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydr. Polym. 2014, 107, 1–6. [Google Scholar] [CrossRef]
- The, J.S. Toxicity of Short Chain Fatty Acids towards Cladosporium Resinae. Appl. Microbiol. 1974, 28, 840–844. [Google Scholar]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.A.; Hammond, S.M. Potassium fluxes. First indications of membrane damage in microorganisms. Biochem. Biophys. Res. Commun. 1973, 54, 796–799. [Google Scholar] [CrossRef]
- Lei, Z.; Heyan, Z.; Tianyang, H.; Siran, L. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem. 2015, 187, 370–377. [Google Scholar]
- Doğaneli, M.Z.; Aydın, N.; Alaçam, E. Koyunlarda östrus siklusunun değişik dönemlerinde uterusun infeksiyonlara karşı koyma gücü üzerine araştırma. AÜ Vet Fak Derg. 1978, 25, 674–685. (In Turkish) [Google Scholar]
- Sonohara, R.; Muramatsu, N.; Ohshima, H.; Kondo, T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys. Chem. 1995, 55, 273–277. [Google Scholar] [CrossRef]
- Gold Book of IUPAC, Heterocyclic Compounds. 2017. Available online: http://goldbook.iupac.org/html/H/H02798.html (accessed on 15 December 2017).
- Khalaf, A.J. Synthesis and antibacterial activity of metronidazole and imidiazole derivatives. Molecules 2009, 14, 2431–2446. [Google Scholar]
- Beale, J.M.; Block, J.H. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed.; A Wolters Kluwer Business; Lippincot & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Trombetta, D.; Bisignano, G.; Arena, S. Study on the Mechanisms of the Antibacterial Action of Some Plant α-β- unsaturated Aldehydes. Lett. Appl. Microbiol. 2002, 35, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Bruck, C.W. Role of glutaraldehyde and other liquid chemical sterilants in the processing of new medical devices. In Sterilization of Medical Products; Morrissey, R.F., Prokopenko, Y.I., Morin, V., Eds.; Polyscience Publications: Heights, QC, Canada, 1991; pp. 376–396. [Google Scholar]
- Pogačić, T.; Sinko, S.; Zamberlin, S.; Samarzija, D. Microbiota of kefir grains. Mljekarstvo 2013, 63, 3–14. [Google Scholar]
- Zanirati, D.F.; Abatemarco, M.; Cicco Sandesb, S.H.; Nicolia, J.R.; Nunes, A.C.; Neumanna, E. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anarobe 2015, 32, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Enan, G.; El-Didamony, G.; Mohamed, E.-H.; Zakaria, A. Novel antibacterial activity of Enterococcus faecium NM2 isolated from urine of healthy people. Asian J. Appl. Sci. 2014, 7, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Gu, F.; Abdella, N.H.; Ruan, H.; He, G. Investigation on culturable microflora in Tibetan kefir grains from different areas of China. J. Food Sci. 2012, 77, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Chifiriuc, M.C.; Cioaca, A.B.; Lazar, V. In vitro assay of the antimicrobial activity of kephir against bacterial and fungal strains. Anaerobe 2011, 17, 433–435. [Google Scholar] [CrossRef]
- Khalil, G.M.; El-Balat, I.; Abozeid, A.; Al-Mohammadi, A.R.; Enan, G. Prevalence, Characterization and Inhibition by Probiotics of Multidrug Resistant Bacteria Isolated from Renal Failure Patients Undergoing Hemodialysis. J. Med. Sci. 2020, 20, 1–12. [Google Scholar]
- Witthuhn, R.C.; Schoeman, T.; Britz, T.J. Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int. Dairy J. 2005, 15, 383–389. [Google Scholar] [CrossRef]
- Kim, D.H.; Chon, J.W.; Kang, I.B.; Kim, H.; Kim, H.S.; Song, K.Y.; Seo, K.H. Growth inhibition of Cronobacter sakazakii in experimentally contaminated powdered infant formula by kefir supernatant. J. Food Prot. 2015, 78, 1651–1655. [Google Scholar] [CrossRef]
- Corona, O.; Randazzo, W.; Miceli, A.; Guarcello, R.; Francesca, N.; Erten, H.; Moschetti, G.; Settanni, L. Characterization of kefir-like beverages produced from vegetable juices. LWT-Food Sci. Technol. 2016, 66, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.F.G.; Santos, F.L.; Santana, L.R.R.; Silva, M.V.L.; Conceição, T.A. Development and characterization of a soy milk Kefir-based functional beverage. Food Sci. Technol. 2018, 38, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shi, J.; Yang, X.; Nan, B.; Liu, Y.; Wang, Z. Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int. Dairy J. 2015, 43, 15–21. [Google Scholar] [CrossRef]
- Enan, G.; Osman, M.E.; Abdel-Haliem, M.E.F.; Abdel-Ghany, S.E. Advances in Microbial and Nucleic Acids Biotechnology. BioMed Res. Int. 2018, 2018, 3102374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gazzar, N.; Almaary, K.; Ismail, A.; Polizzi, G. Influence of Funneliformis mosseae enhanced with titanium dioxide nanoparticles (TiO2NPs) on Phaseolus vulgaris L. under salinity stress. PLoS ONE 2020, 15, e0235355. [Google Scholar] [CrossRef]
- Enan, G.; Al-Mohammadi, A.-R.; El-Gazzar, N.; Reda, F.M.; Abdel-Aziz, N. Incidene of Bacillus cereus in Egyptian foods and its control by probiotics. Biosci. Res. 2020, 17, 550–559. [Google Scholar]
- Shang, N.; Xu, R.H.; Li, P.L. Structure and characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr. Polym. 2013, 91, 128–134. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for Larson. E.L.; Morton, H.E. Alcohols. In Disinfection, Sterilization and Preservation, 4th ed.; Block, S.S., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1960. [Google Scholar]
- Holt, J.G. Facultatively Anaerobic Gram-Negative Rods, Subgroup 1: Family Enterobacteriaceae. In Bergey’s Manual of Determinative Bacteriology, 9th ed.; Holt, J.G., Ed.; Lippincott Williams and Wilkins: Baltimore, MA, USA, 1994; pp. 175–189. ISBN 9780683006032. [Google Scholar]
- Kurtzman, C.P.; Fell, J.W. The Yeasts a Taxonomic Study, 4th ed.; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Durairaj, S.; Srinivasan, S.; Lakshmana-perumalsamy, P. In vitro Antibacterial Activity and Stability of Garlic Extract at Different pH and Temperature. Electron. J. Biol. 2009, 5, 5–10. [Google Scholar]
- Performance Standards for Antimicrobial Disk Susceptibility Test: Approved Standard M2-A6, 6th ed.; National Committee for Clinical Laboratory Standards (NCCLS): Wayne, PA, USA, 2002.
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Victoria, C.N.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial compostion of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.A.; Eperjesi, F.; Gilmartin, B. An introduction to analysis of variance (ANOVA) with special reference to data from clinical experiments in optometry. Opthalmic Physiol. Opt. 2002, 20, 235–241. [Google Scholar] [CrossRef]
No. | Classification, Compound Name and Structure | Mol. Formula and Mol. Wt. | Area | Parent Ion (M+) | Base Peak (m/z) (100%) |
---|---|---|---|---|---|
Group 1 (Alkaloids) | |||||
1 | 7-Tosyl-1,3:2,5:4,6-trimethylene-d-glycero-d-mannoheptitol | C17H22O9S (402.0) | 0.77 | 402.0 | 91.00 and 155.0 |
Group 2 (Phenols) | |||||
1 | 2,2′-Methylenebis[6-tertbutyl]-p-cresol | C23H32O2 (340.0) | 0.28 | 340.0 | 177.0 |
Group 3 (Esters) | |||||
1 | 2-Ethylhexyl phthalate | C24H38O4 (390.0) | 0.32 | 390.0 (M+1) | 149.0 |
2 | Phorobol 12,13-dihexanoate | C32H48O8 (560.0) | 0.77 | 560.0 | 43.00 |
3 | 2,3-Dichloro 2-octyl phenyl fumarate | C18H22Cl2O4 (372.0) | 5.13 | 372.0 | 99.0 |
4 | Nonyl octyl fumarate | C21H38O4 (354.0) | 5.13 | 355.0 (M+1) | 71.00 |
5 | 2-Chloro-6-(4-fluorophenyl)-2-octyl fumarate | C18H22ClFO4 (356.0) | 5.13 | 356.0 | 99.0 |
6 | 2-[(Methylsulfonyloxy)ethyl 4-(6-methyl 1,4-dioxaspiro [4.5]dec-7-yl)butanoate | C16H22O7S (364.0) | 0.42 | 364.0 | 99.00 and 111.0 |
7 | Cypermethrin | C22H19Cl2NO3 (415.0.0) | 18.21 | 415.0 | 163.0 |
8 | Bifenthrin | C23H22ClF3O2 (422.0) | 18.21 | 424.0 (M+2) | 181.0 |
9 | Cyhalothrin | C23H19ClF3NO3 (449.0) | 18.21 | 449.0 | 181.0 |
10 | Dihydroobscurinervinediol diacetate | C29H40N2O7 (528.0) | 1.63 | 528.0 | 69.00 |
11 | 3,4,5,6-Tetrahydro-6-nonul-2H-pyran-2-one (cyclic ester) | C14H25O2 (226.0) | 0.70 | 226.0 | 99.0 |
12 | 6-Heptylotetrahydro-2H-pyran-2-one (cyclic ester) | C12H22O2 (198.0) | 0.44 | 198.0 | 99.00 |
Group 4 (Fatty Esters) | |||||
1 | Methyl hexadecanoate | C17H34O2 (270.0) | 0.28 | 270.0 | 74.00 |
2 | Methyl octadec-16-enoate | C19H6O2 (296.0) | 0.47 | 296.0 | 55.00 |
3 | Methyl octadec-10-enoate | C19H6O2 (296.0) | 0.47 | 296.0 | 55.00 |
3 | 2- (Tetradecycloxyethyl) palmitate | C32H64O3 (496.0) | 0.77 | 496.0 | 57.00 |
4 | Trimyristin | C45H86O6 (722.0) | 0.78 | 722.0 | 57.00 |
5 | (E) -2(stearoyloxy) ethyl octadec-9-enoate | C38H72O4 (592.0) | 1.63 | 592.0 | 99.00 and 311.0 |
Group 5 (Unsaturated Fatty Esters) | |||||
1 | Methyl 5,6-dihydro-5,6-dihydroxy-(5R, 6R)-10′-Apo-α′-PSI-carotenoate | C28H40O4 (440.0) | 1.13 | 440.0 | 109.0 |
2 | Tetrahydrofurfuryl oleate | C23H42O3 (366.0) | 1.97 | 366.0 | 71.00 |
3 | Methyl (10E)-12,12-dideutero-14-oxo-10-nonadecenoate | C20H34D2O3 (326.0) | 1.63 | 326.0 | 99.00 |
Group 6 (Steroides) | |||||
1 | 17,17-Ethylenedioxy-5,19-cycloaandrast-6-en-3-one | C21H28O3 (328.0) | 0.35 | 328.0 | 99.00 |
2 | (22E)-Ergosta-7,9(11),22-trien-3-yl acetate | C30H46O2 (438.0) | 0.35 | 438.0 | 43.00 |
3 | 28-Acetylspirosolan-3-yl acetate | C31H49NO4 (499.0) | 0.31 | 499.0 | 163.0 and 43.00 |
4 | 3-Oxo-9 β-lanosta-7-en-26,23-olide | C30H46O3 (454.0) | 0.42 | 454.0 | 439.0 |
5 | Cholest-5-en-ol | C27H46O (386.0) | 4.59 | 386.0 | 43.00 and 81.00 |
6 | 3-Methoxy-6-oxo-2′-methylenechloestano [7,8α] cyclobutane | C31H50O2 (454.0) | 0.99 | 454.0 | 95.00 |
7 | 17-Acetoxy-4,4-dimethyl-3-methoxy-3,19-epoxy androst-8-en-7-ol | C24H36O5 (404.0) | 0.41 | 404.0 | 270.0 |
Group 7 (Polyalkene) | |||||
1 | 2,6,10,15,19,23-Hexa methyl-2, 6,10,14,18,22-tetracosahexaene | C30H5O (440.0) | 0.16 | 41.0 | 69.00 |
Group 8 (Heterocyclic) | |||||
1 | 1-(2-Nitro-4-trifluoro-methyl-phenyl)-5-propyl-1H-[1,2,3] triazole-4-carboxylic ethyl ester | C15H15F3N4O4 (372.0) | 3.15 | 372.0 | 43.00 |
2 | Isobutyl 6-methyl-2-oxo-4-[4-trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinearboxylate | C17H19F3N2O3 (356.0) | 9.57 | 356.0 | 155.0 and 299.0 |
Group 9 (Aromatic Aldehyde) | |||||
1 | m-Phenoxy benzaldehyde | C13H10O2 (198.0) | 0.43 | 198.0 | 141.0 |
Tested Organism | Inhibition Zone Diameters (mm) | ||
---|---|---|---|
KB | NKB | p-Value | |
Salmonella typhimurium ATCC14028 | 17.0 ± 0.5 | 14 ± 0.2 | 00.002 |
List. monocytogenes ATCC4957 | 15 ± 0.2 | 18 ± 0.0 | 0.000 |
B. cereus ATCC14579 | 18 ± 0.45 | 17 ± 0.18 | 0.000 |
S. aureus ATCC6538 | 21 ± 0.44 | 13 ± 0.25 | 0.000 |
E. coli ATCC 11229 | 14 ± 0.2 | 10 ± 0.1 | 0.000 |
A. flavus ATCC16872 | 7 ± 0.18 | 3 ± 0.0 | 0.000 |
A. niger ATCC20611 | 2 ± 0.1 | 4 ± 0.0 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mohammadi, A.-R.; Ibrahim, R.A.; Moustafa, A.H.; Ismaiel, A.A.; Abou Zeid, A.; Enan, G. Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules 2021, 26, 2635. https://doi.org/10.3390/molecules26092635
Al-Mohammadi A-R, Ibrahim RA, Moustafa AH, Ismaiel AA, Abou Zeid A, Enan G. Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules. 2021; 26(9):2635. https://doi.org/10.3390/molecules26092635
Chicago/Turabian StyleAl-Mohammadi, Abdul-Raouf, Rehab A. Ibrahim, Ahmed H. Moustafa, Ahmed A. Ismaiel, Azza Abou Zeid, and Gamal Enan. 2021. "Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage" Molecules 26, no. 9: 2635. https://doi.org/10.3390/molecules26092635
APA StyleAl-Mohammadi, A. -R., Ibrahim, R. A., Moustafa, A. H., Ismaiel, A. A., Abou Zeid, A., & Enan, G. (2021). Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules, 26(9), 2635. https://doi.org/10.3390/molecules26092635