Preclinical Assessment Addressing Intravenous Administration of a [68Ga]Ga-PSMA-617 Microemulsion: Acute In Vivo Toxicity, Tolerability, PET Imaging, and Biodistribution
Abstract
:1. Introduction
2. Results
2.1. Preparation and Radioanalysis of [68Ga]Ga-PSMA-617 and [68Ga]Ga-PSMA-617-ME
2.2. Characterization of 68Zn-PSMA-617 and 68Zn-PSMA-617-ME
2.3. Acute In Vivo Toxicity and Tolerability of Intravenous Administration of 68Zn-PSMA-617-ME
2.3.1. Food Consumption and General Appearance
2.3.2. Body Weight and Organ Necropsy and Histology
2.3.3. Clinical Biochemistry
2.4. MicroPET/CT Imaging
2.5. Ex Vivo Biodistribution
3. Discussion
3.1. Characterization of 68Zn-PSMA-617 and 68Zn-PSMA-617-ME
3.2. Acute In Vivo Toxicity and Tolerability of Intravenous Administration of 68Zn-PSMA-617-ME
3.3. MicroPET/CT Imaging
3.4. Ex Vivo Biodistribution
4. Materials and Methods
4.1. Materials
4.2. Preparation and Radioanalysis of [68Ga]Ga-PSMA-617 and [68Ga]Ga-PSMA-617-ME
Characterization of ME and 68Zn-PSMA-617-ME
4.3. Animal Study Design
4.3.1. Animal Studies
4.3.2. Acute In Vivo Toxicity and Tolerability of IV Administration of 68Zn-PSMA-617-ME
4.4. MicroPET/CT Imaging
4.5. Post Mortem Biodistribution
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Muzaffar, F.; Singh, U.K.; Chauhan, L. Review on microemulsion as futuristic drug delivery. Int. J. Pharm. Sci. 2013, 5, 39–53. [Google Scholar]
- Bhattacharya, R.; Mukhopadhyay, S.; Kothiyal, P. Review on microemulsion—As a potential novel drug delivery system. World J. Pharm. Pharm. Sci. 2016, 5, 700–729. [Google Scholar]
- Lopes, L.B. Overcoming the Cutaneous Barrier with Microemulsions. Pharmaceutics 2014, 6, 52–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, D.P.; Rathod, H.J.; Shah, D.P. Microemulsions: A potential novel drug delivery system. Int. J. Pharma Drug Dev. 2016, 1, 37–47. [Google Scholar]
- Nirmala, M.J.; Nagarajan, R. Microemulsions as Potent Drug Delivery Systems. J. Nanomed. Nanotechnol. 2016, 7, 7439. [Google Scholar]
- Ma, S.; Chen, F.; Ye, X.; Dong, Y.; Xue, Y.; Zhang, W. Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil): Formulation and pharmacokinetics. Int. J. Nanomed. 2013, 8, 4045–4052. [Google Scholar]
- Aboumanei, M.A.; Abdelbary, A.A.; Ibrahim, I.T.; Tadros, M.I.; El-Kolaly, M.T. Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: In vitro characterization, molecular docking, 125I-radiolabeling and in vivo biodistribution studies. Int. J. Pharm. 2018, 545, 240–253. [Google Scholar] [CrossRef]
- Hippalgaonkar, K.; Majumdar, S.; Kansara, V. Injectable lipid emulsions—Advancements, opportunities and challenges. AAPS PharmSciTech 2010, 11, 1526–1540. [Google Scholar] [CrossRef] [Green Version]
- Gad, S.C. Rodents model for toxicity testing and biomarkers. In Biomarkers in Toxicology; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Zhu, H.; Xie, Q.; Li, N.; Tian, H.; Liu, F.; Yang, Z. Radio-synthesis and mass spectrometry analysis of 68Ga-DKFZ- PSMA-617 for non-invasive prostate cancer PET imaging. J. Radioanal. Nucl. Chem. 2016, 309, 575–581. [Google Scholar] [CrossRef]
- Mandiwana, V.; Kalombo, L.; Lemmer, Y.; Labuschagne, P.; Semete-Makokotlela, B.; Sathekge, M.; Ebenhan, T.; Zeevaart, J.R. Preclinical assessment of 68Ga-PSMA-617 entrapped in a microemulsion delivery system for applications in prostate cancer PET/CT imaging. J. Label. Compd. Radiopharm. 2019, 62, 332–345. [Google Scholar] [CrossRef]
- Tabrizi, B.A.; Kararoudi, M.N.; Mahmoudian, B. Evaluation of serumal levels of AST, ALT, total bilirubin, glucose, urea and creatinin in mice after administration of Tc-99m MIBI. Int. J. Anim. Vet. Adv. 2012, 4, 68–70. [Google Scholar]
- Fernandes, D.P.; Pimentel, M.M.L.; Dos Santos, F.A.; Praxedes, E.A.; Érika, A.; De Brito, P.D.; Lima, M.A.; Lelis, I.C.; De Macedo, M.F.; Bezerra, M.B. Hematological and biochemical profile of BALB/c nude and C57BL/6 SCID female mice after ovarian xenograft. Anais Academia Brasileira Ciências 2018, 90, 3941–3948. [Google Scholar] [CrossRef]
- Umbricht, C.A.; Benešová, M.; Schmid, R.M.; Türler, A.; Schibli, R.; Meulen, N.P.; Van Der Meulen, N.P.; Müller, C. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617- preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; et al. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015, 56, 1169–1176. [Google Scholar]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, F.C.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44. [Google Scholar] [CrossRef]
- Subongkot, T.; Ngawhirunpat, T. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. Int. J. Nanomed. 2017, 12, 5585–5599. [Google Scholar] [CrossRef] [Green Version]
- Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles—A review. Curr. Drug Discov. Technol. 2012, 9, 2–16. [Google Scholar] [CrossRef]
- Wong, P.; Li, L.; Chea, J.; Delgado, M.K.; Crow, D.; Poku, E.; Szpikowska, B.; Bowles, N.; Channappa, D.; Colcher, D.; et al. PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nucl. Med. Biol. 2017, 47, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Emmett, L.; Willowson, K.; Violet, J.; Shin, J.; Blanksby, A.; Lee, J. Lutetium-177 PSMA radionuclide therapy for men with prostate cancer: A review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 2017, 64, 52–60. [Google Scholar] [CrossRef]
- Melariri, P.; Kalombo, L.; Nkuna, P.; Dube, A.; Hayeshi, R.; Ogutu, B.; Gibhard, L.; Dekock, C.; Smith, P.; Weisner, L.; et al. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice. Int. J. Nanomed. 2015, 10, 1493–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeman, W.A.P.; de Jong, M.; de Blois, E.; Bernard, B.F.; Konijnenberg, M.; Krenning, E.P. Radiolabelling DOTA-peptides with 68Ga. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Ebenhan, E.; Vorster, M.; Marjanovic-Painter, B.; Wagener, J.; Suthiram, J.; Modiselle, M.; Mokaleng, B.B.; Zeevaart, J.R.; Sathekge, M.M. Development of a Single Vial Kit Solution for Radiolabeling of 68Ga-DKFZ-PSMA-11 and Its Performance in Prostate Cancer Patients. Molecules 2015, 20, 14860–14878. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidelines for the Testing of Chemicals. OECD 420. Acute Oral Toxicity—Fixed Dose Procedure; Organisation for Economic Cooperation and Development: Paris, France, 2001. [Google Scholar]
- The European Medicines Agency. EMEA/88802/2007/EN/FINAL. 2016. Available online: https://www.ema.europa.eu/en/documents/annual-report/summary-european-medicines-agencys-annual-report-2006_en.pdf (accessed on 11 November 2020).
- Vanhove, C.; Bankstahl, J.P.; Kramer, S.D.; Visser, E.; Belcari, N.; Vandenberghe, S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys. 2015, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleynhan, J.; Elgar, D.; Ebenhan, T.; Zeevaart, J.R.; Kotzé, A.; Grobler, A. A toxicity profile of the Pheroid® technology in rodents. Toxicol. Rep. 2019, 6, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Mandiwana, V. Evaluation of the Effect of Colloidal Systems on Biodistribution of Selected Prostate Cancer Radiopharmaceuticals. Ph.D. Thesis, North-West University, Vanderbijlpark, South Africa, October 2019. Available online: https://repository.nwu.ac.za/bitstream/handle/10394/35202/Mandiwana_V.pdf?isAllowed=y&sequence=1 (accessed on 24 February 2021).
Sample * | F | Size (nm) | PDI | ZP (mV) | pH | Conductivity (µS/cm) |
---|---|---|---|---|---|---|
68Zn-PSMA-617 | 1 | 25.13 ± 0.02 | 0.35 ± 0.01 | −26.25 ± 0.53 | 6.50 | 13.01 |
2 | 22.25 ± 0.31 | 0.34 ± 0.00 | −22.10 ± 3.55 | 6.89 | 12.20 | |
3 | 25.79 ± 0.13 | 0.32 ± 0.00 | −27.22 ± 0.16 | 6.90 | 13.19 | |
68Zn-PSMA-617-ME | 4 | 30.48 ± 5.06 | 0.34 ± 0.06 | −19.25 ± 0.53 | 7.50 | 14.21 |
5 | 58.43 ± 5.25 | 0.25 ± 0.01 | −26.34 ± 0.29 | 7.00 | 15.01 | |
6 | 52.87 ± 0.38 | 0.44 ± 0.00 | −27.96 ± 0.47 | 7.40 | 14.87 |
Sample | ME (blank) | 68Zn-PSMA-617-ME |
---|---|---|
Heart | 0.13 ± 0.03 | 0.14 ± 0.01 |
Lungs | 0.17 ± 0.03 | 0.18 ± 0.02 |
Liver | 0.92 ± 0.22 | 1.01 ± 0.10 |
Spleen | 0.05 ± 0.01 | 0.05 ± 0.01 |
Stomach and SI | 1.28 ± 0.29 | 1.21 ± 0.16 |
Large intestine | 0.22 ± 0.04 | 0.27 ± 0.08 |
Kidneys2 | 0.30 ± 0.05 | 0.33 ± 0.03 |
Brain | 0.35 ± 0.03 | 0.35 ± 0.05 |
Normal * | ME | 68Zn-PSMA-617-ME | Control | |
---|---|---|---|---|
Serum Proteins | 49 | |||
Total protein (g/L) | 4–70 | 49 | 48 ± 1 | |
Albumin (g/L) | 21–30 | 31 | 27 | 27 |
Bilirubin (umol/L) | 0–1 | - | 2.0 ± 0.02 | - |
Phosphatase (IU/L) | - | 359 | 210 ± 60 | 157 |
Hepatic Function | 34 | |||
ALT (IU/L) | 10–35 | 27 ± 2 | 38 ± 5 | |
AST (IU/L) | 54–298 | - | 135 | 110 |
Pancreatic Function | - | |||
Amylase (IU/L) | 1496–3200 | 1494 | - | |
Kidney Function | 13 | |||
Urea (mmol/L) | 4–11 | 8 ± 1 | 11 ± 1 | |
Creatinine (umol/L) | 40–70 | 19 | 31 ± 10 | 50 |
Electrolytes | ||||
Na+ (mmol/L) | 140–160 | 149 ± 2 | 138 ± 7 | 145 |
K+ (mmol/L) | 5–8 | 7.4 | 6.4 | - |
Serum Lipids | 2.7 | |||
Cholesterol (mmol/L) | 5–7 | - | 2.0 ± 0.1 | |
HDL (mmol/L) | - | 1.6 ± 0.1 | 1.6 ± 0.1 | 2.10 |
LDL (mmol/L) | - | - | 0.3 | - |
Triglycerides (mmol/L) | 5–10 | 1.0 | 1.2 ± 0.3 | 1.7 |
Test Formulation: | ME | Composition of Formulation (v/v) |
---|---|---|
Size: | 72.23 nm ± 0.18 | 1. Lauric acid-PEG 4000 (0.17%) |
PDI: | 0.26 ± 0.005 | 2. Ethanol (8.28%) |
Zeta Potential: | −2.87 mV ± 0.53 | 3. Polyvinyl alcohol (41.39%) |
pH: | 6.89 | 4. Sodium oleate (41.39%) |
Appearance: | Golden-translucent liquid | 5. d-α-tocopherol (0.17%) |
6. Tween 80 (0.33%) 7. Saline (8.28%) | ||
Test Formulation: | [68Ga]Ga-PSMA-617-ME | Composition of Formulation (v/v) |
Size: | 27.61 nm ± 1.11 nm | 1. Lauric acid-PEG 4000 (0.17%) |
PDI: | 0.53 ± 0.006 | 2. Ethanol (8.28%) |
Zeta Potential: | −2.31 ± 1.49 mV | 3. Polyvinyl alcohol (41.39 %) |
pH: | 7.00 | 4. Sodium oleate (41.39%) |
Appearance: | Golden-translucent liquid | 5. d-α-tocopherol (0.17%) |
6. Tween 80 (0.33%) | ||
7. [68Ga] Ga-PSMA-617 (8.28%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandiwana, V.; Kalombo, L.; Hayeshi, R.; Zeevaart, J.R.; Ebenhan, T. Preclinical Assessment Addressing Intravenous Administration of a [68Ga]Ga-PSMA-617 Microemulsion: Acute In Vivo Toxicity, Tolerability, PET Imaging, and Biodistribution. Molecules 2021, 26, 2650. https://doi.org/10.3390/molecules26092650
Mandiwana V, Kalombo L, Hayeshi R, Zeevaart JR, Ebenhan T. Preclinical Assessment Addressing Intravenous Administration of a [68Ga]Ga-PSMA-617 Microemulsion: Acute In Vivo Toxicity, Tolerability, PET Imaging, and Biodistribution. Molecules. 2021; 26(9):2650. https://doi.org/10.3390/molecules26092650
Chicago/Turabian StyleMandiwana, Vusani, Lonji Kalombo, Rose Hayeshi, Jan Rijn Zeevaart, and Thomas Ebenhan. 2021. "Preclinical Assessment Addressing Intravenous Administration of a [68Ga]Ga-PSMA-617 Microemulsion: Acute In Vivo Toxicity, Tolerability, PET Imaging, and Biodistribution" Molecules 26, no. 9: 2650. https://doi.org/10.3390/molecules26092650
APA StyleMandiwana, V., Kalombo, L., Hayeshi, R., Zeevaart, J. R., & Ebenhan, T. (2021). Preclinical Assessment Addressing Intravenous Administration of a [68Ga]Ga-PSMA-617 Microemulsion: Acute In Vivo Toxicity, Tolerability, PET Imaging, and Biodistribution. Molecules, 26(9), 2650. https://doi.org/10.3390/molecules26092650