Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples
Abstract
:1. Introduction
2. Results
2.1. Characterization of TiO2-MWCNT-MIP and MMWCNTs-PS-DVB Composites
2.2. Electrochemical Behavior of Rhodamine B
2.3. Optimization of the MSPE Parameters
2.4. Optimization the Electrochemical Parameters
2.5. Analytical Application
3. Materials and Methods
3.1. Reagents, Standards, and Samples
3.2. Apparatus and Instruments
3.3. Synthesis of Molecularly Imprinted Polymer (MIP)
3.4. Sensor Fabrication
3.5. Sample Preparation
3.6. Extraction of Rhodamine B by Magnetic Multiwalled Carbon Nanotubes Poly(styrene-co-divinylbenzene) Composite (MMWCNTs-PS-DVB)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 2007, 85, 956–964. [Google Scholar] [CrossRef]
- Qi, P.; Lin, Z.; Li, J.; Wang, C.; Meng, W.; Hong, H.; Zhang, X. Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products. Food Chem. 2014, 164, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, L.; De Orsi, D.; Cavazzutti, G.; Multari, G.; Tonelli, D. HPLC determination of rhodamine B (C.I. 45170) in cosmetic products. Chromatographia 1996, 43, 76–78. [Google Scholar] [CrossRef]
- Tatebe, C.; Zhong, X.; Ohtsuki, T.; Kubota, H.; Sato, K.; Akiyama, H. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods. Food Sci. Nutr. 2014, 2, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-L.; Wang, Y.-C.; Ding, W.-H. Trace Determination of Rhodamine B and Rhodamine 6G Dyes in Aqueous Samples by Solid-phase Extraction and High-performance Liquid Chromatography Coupled with Fluorescence Detection. J. Chin. Chem. Soc. 2012, 59, 515–519. [Google Scholar] [CrossRef]
- Dongre, C.; Dekker, R.; Hoekstra, H.J.W.M.; Pollnau, M.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Ramponi, R.; Van Weeghel, R.; Besselink, G.A.J.; et al. Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides. Opt. Lett. 2008, 33, 2503–2505. [Google Scholar] [CrossRef]
- Park, M.; Bahng, S.-H.; Woo, N.; Kang, S.H. Highly sensitive wavelength-dependent nonaqueous capillary electrophoresis for simultaneous screening of various synthetic organic dyes. Talanta 2016, 152, 236–243. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Yao, L. Dating the writing age of black roller and gel inks by gas chromatography and UV–vis spectrophotometer. Forensic Sci. Int. 2006, 162, 140–143. [Google Scholar] [CrossRef]
- Murtada, K.; Moreno, V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds-towards analytical approach. J. Electroanal. Chem. 2020, 861, 113988. [Google Scholar] [CrossRef]
- Pourreza, N.; Rastegarzadeh, S.; Larki, A. Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100. Talanta 2008, 77, 733–736. [Google Scholar] [CrossRef]
- Soylak, M.; Unsal, Y.E.; Yilmaz, E.; Tuzen, M. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chem. Toxicol. 2011, 49, 1796–1799. [Google Scholar] [CrossRef] [PubMed]
- Unsal, Y.E.; Soylak, M.; Tuzen, M. Dispersive liquid–liquid microextraction–spectrophotometry combination for determination of rhodamine B in food, water, and environmental samples. Desalin. Water Treat. 2014, 55, 2103–2108. [Google Scholar] [CrossRef]
- Yan, J.; Cen, J.-M.; Tan, X.-C.; Tan, S.-F.; Wu, Y.-Y.; Zhang, H.; Wang, Q. Determination of trace rhodamine B by spectrofluorometry and magnetic solid phase extraction based on a 3D reduced graphene oxide composite. Anal. Methods 2017, 9, 5433–5440. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Bouri, M.; Lerma-García, M.J.; Salghi, R.; Zougagh, M.; Ríos, A. Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis. Talanta 2012, 99, 897–903. [Google Scholar] [CrossRef]
- Bao, L.; Meng, M.; Sun, K.; Li, W.; Zhao, D.; Li, H.; He, M. Selective adsorption and degradation of rhodamine B with modified titanium dioxide photocatalyst. J. Appl. Polym. Sci. 2014, 131, 1–12. [Google Scholar] [CrossRef]
- Goldberg, H.D.; Brown, R.B.; Liu, D.P.; Meyerhoff, M.E. Screen printing: A technology for the batch fabrication of integrated chemical-sensor arrays. Sens. Actuators B Chem. 1994, 21, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Moreno, V.; Llorent-Martínez, E.J.; Zougagh, M.; Ríos, A. Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes. Talanta 2016, 161, 775–779. [Google Scholar] [CrossRef]
- Yu, L.; Mao, Y.; Qu, L. Simple Voltammetric Determination of Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and Preserved Fruit. Food Anal. Methods 2013, 6, 1665–1670. [Google Scholar] [CrossRef]
- Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem. 2015, 171, 292–297. [Google Scholar] [CrossRef]
- Murtada, K.; Jodeh, S.; Zougagh, M.; Ríos, Á. Development of an Aluminium Doped TiO2 Nanoparticles-modified Screen Printed Carbon Electrode for Electrochemical Sensing of Vanillin in Food Samples. Electroanalysis 2018, 30, 969–974. [Google Scholar] [CrossRef]
- Murtada, K.; Salghi, R.; Ríos, Á.; Zougagh, M. A sensitive electrochemical sensor based on aluminium doped copper selenide nanoparticles-modified screen printed carbon electrode for determination of L-tyrosine in pharmaceutical samples. J. Electroanal. Chem. 2020, 874, 114466. [Google Scholar] [CrossRef]
- Murtada, K.; De Andrés, F.; Ríos, Á.; Zougagh, M. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis. Electrophoresis 2018, 39, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Murtada, K.; De Andrés, F.; Galván, I.; Ríos, Á.; Zougagh, M. LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. J. Chromatogr. B 2020, 1136, 121878. [Google Scholar] [CrossRef]
- Adelantado, C.; Murtada, K.; Ríos, Á.; Zougagh, M. Magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) for propranolol extraction and separation by capillary electrophoresis. Bioanalysis 2018, 10, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
Polymer | TiO2 NPs (mg) | MWCNT (mg) | KH550 (mL) | AM (mg) | Rhodamine B (mg) |
---|---|---|---|---|---|
MIP1 | 2 | 5 | 4 | 1.4 | 2 |
MIP2 | 7 | 5 | 4 | 1.4 | 2 |
MIP3 | 20 | 5 | 4 | 1.4 | 2 |
MIP4 | 7 | 10 | 4 | 1.4 | 2 |
MIP5 | 7 | 15 | 4 | 1.4 | 2 |
MIP6 | 7 | 5 | 10 | 1.4 | 2 |
MIP7 | 7 | 5 | 1 | 1.4 | 2 |
MIP8 | 7 | 5 | 4 | 5 | 2 |
MIP9 | 7 | 5 | 4 | 10 | 2 |
MIP10 | 7 | 5 | 4 | 1.4 | 5 |
MIP11 | 7 | 5 | 4 | 1.4 | 10 |
Interferent Species | Tolerated Interferent Analyte (w/w) Ratio a |
---|---|
Rhodamine 123, Rhodamine 6G | >5 b |
Ascorbic acid, citric acid, glucose, maltose, Mg+2, Cu+2, Fe+2 | >20 b |
Analytical Parameter | Rhodamine B |
---|---|
Linear range (µg L−1) | 5—100 |
Calibration graph | |
Correlation coefficient | 0.9979 |
Intercept | 2.253 × 10−7 |
Slope (µg L−1) | 0.23 |
Detection limit (µg L−1) | 1.44 |
Quantification limit (µg L−1) | 4.81 |
RSD (%) (n = 10) 1 | 6.59 |
Method | Linear Range (μg L−1) | LOD (μg L−1) | Sample Matrix | Recovery (%) | Reference |
---|---|---|---|---|---|
UV-visible spectrometry-SPE | 250–3000 | 3.14 | Soft drink, wastewater and lipstick | 96–118 | [11] |
UV-visible spectrometry-DLLME | 100–3000 | 2.1 | Drug, ink, food, cosmetic product, and waste waters | 89–101 | [12] |
Voltammetric-GCE | 4.78–956.1 | 2.93 | Fruit juice and preserved fruit | 95.5–104 | [19] |
MIP-SPE-HPLC | 100–8000 | 3.4 | Dyed pink melon seeds, pepper and candied purple potato | 78.47–101.6 | [20] |
MIP/SPCE-MSPE | 5–100 | 1.44 | Chili powder and tomato sauce | 91–97 | This work |
Sample | Rhodamine B | ||
---|---|---|---|
Added (µg kg−1) | Found (µg kg−1) | Recovery (%), n = 3 | |
Chili powder | 10 | 9.38 ± 0.91 | 93 |
25 | 22.87 ± 1.67 | 91 | |
100 | 95.67 ± 5.67 | 95.6 | |
Tomato sauce | 10 | 9.56 ± 1.24 | 95.6 |
50 | 48.45 ± 6.78 | 97 | |
100 | 91.60 ± 4.12 | 91.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benmassaoud, Y.; Murtada, K.; Salghi, R.; Zougagh, M.; Ríos, Á. Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples. Molecules 2021, 26, 2670. https://doi.org/10.3390/molecules26092670
Benmassaoud Y, Murtada K, Salghi R, Zougagh M, Ríos Á. Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples. Molecules. 2021; 26(9):2670. https://doi.org/10.3390/molecules26092670
Chicago/Turabian StyleBenmassaoud, Yassine, Khaled Murtada, Rachid Salghi, Mohammed Zougagh, and Ángel Ríos. 2021. "Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples" Molecules 26, no. 9: 2670. https://doi.org/10.3390/molecules26092670
APA StyleBenmassaoud, Y., Murtada, K., Salghi, R., Zougagh, M., & Ríos, Á. (2021). Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples. Molecules, 26(9), 2670. https://doi.org/10.3390/molecules26092670