Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Parameters
2.2. Phytochemical Screening
2.3. Phytochemical Content and Antioxidant Ability
2.4. GC–MS Analyses
2.5. HPLC–PDA/MS Analyses
3. Materials and Methods
3.1. Samples and Sample Extraction
3.2. Chemical Reagents and Solvents
3.3. Physico-Chemical Analyses and Phytochemical Screening
3.4. Analysis and Quantification of Phenolic Contents
3.5. Determination of Antioxidant Activity
3.6. GC–MS
3.7. HPLC–PDA/ESI-MS
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tassin, C. Paysages Végétaux du Domaine Méditerranéen: Bassin Méditerranéen, Californie, Chili Central, Afrique du Sud, Australie Méridionale; IRD Éditions: Marseille, France, 2012. [Google Scholar]
- Bouhafsoun, A.; Boukeloua, A.; Yener, I.; Diare Mohamed, L.; Diarra, T.; Errouane, K.; Mezmaz, R.; Temel, H.; Kaid-Harche, M. Chemical composition and mineral contents of leaflets, rachs and fruits of Chamaerops humilis L. Acad. J. Agric. Res. 2019, 20, 8. [Google Scholar]
- Nehdi, I.A.; Mokbli, S.; Sbihi, H.; Tan, C.P.; Al-Resayes, S.I. Chamaerops humilis L. var. argentea André Date Palm Seed Oil: A Potential Dietetic Plant Product: Nutritional value of C. humilis seed oil. J. Food Sci. 2014, 79, C534–C539. [Google Scholar] [CrossRef] [PubMed]
- Bnouham, M.; Merhfour, F.Z.; Ziyyat, A.; Aziz, M.; Legssyer, A.; Mekhfi, H. Antidiabetic effect of some medicinal plants of Oriental Morocco in neonatal non-insulin-dependent diabetes mellitus rats. Hum. Exp. Toxicol. 2010, 29, 865–871. [Google Scholar] [CrossRef]
- Hasnaoui, O.; Bouazza, M.; Benali, O.; Thinon, M. Ethno Botanic Study of Chamaerops humilis L. Var. argentea Andre (Are-caceae) in Western Algeria. Agric. J. 2011, 6, 1–6. [Google Scholar]
- Gaamoussi, F.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and hypolipidemic effects of an aqueous extract of Chamaerops humilis leaves in obese, hyperglycemic and hyperlipidemic Meriones shawi rats. Pak. J. Pharm. Sci. 2010, 23, 212–219. [Google Scholar] [PubMed]
- Benmehdi, H.; Hasnaoui, O.; Benali, O.; Salhi, F. Phytochemical investigation of leaves and fruits extracts of Chamaerops humilis L. J. Mater. Environ. Sci. 2012, 3, 320–337. [Google Scholar]
- Blumenthal, M.; Busse, W.; Goldberg, A.; Gruenwald, J.; Hall, T.; Riggins, C.W.; Rister, R.S. The Complete German Commis-sion E Monographs: Therapeutic Guide to Herbal Medicines; American Botanical Council: Austin, TX, USA; Integrative Medicine Communications: Boston, MA, USA, 1998. [Google Scholar]
- Benahmed-Bouhafsoun, A.; Djied, S.; Mouzaz, F.; Kaid-Harche, M. Phytochemical composition and in vitro antioxidant activity of Chamaerops humilis L. extracts. Int. J. Pharm. Pharm. Sci. 2013, 5, 741–744. [Google Scholar]
- Miguel, M.; Bouchmaaa, N.; Aazza, S.; Gaamoussi, F.; Lyoussi, B. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of Moroccan plants. Fresenius Environ. Bull. 2014, 23, 1–14. [Google Scholar]
- Fekar, G.; Aiboudi, M.; Bouyazza, L. Composition en acides gras, stérols et tocophérols de l huile végétale non convention-nelle extraite des graines du Chamaerops humilis L. du Maroc. Afrique Sci. 2015, 11, 6. [Google Scholar]
- Gonçalves, S.; Medronho, J.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Bioactive properties of Chamaerops humilis L.: Antioxidant and enzyme inhibiting activities of extracts from leaves, seeds, pulp and peel. 3 Biotech 2018, 8, 88. [Google Scholar] [CrossRef]
- Ferrão, T.S.; Ferreira, D.F.; Flores, D.W.; Bernardi, G.; Link, D.; Barin, J.S.; Wagner, R. Evaluation of composition and quality parameters of jelly palm (Butia odorata) fruits from different regions of Southern Brazil. Food Res. Int. 2013, 54, 57–62. [Google Scholar] [CrossRef]
- FAO. Street Foods: A Summary of FAO Studies and Other Activities Relating to Street Foods; Food and Agriculture Organization of the United States: Rome, Italy, 1988. [Google Scholar]
- Shaba, E.Y.; Ndamitso, M.M.; Mathew, J.T.; Etsunyakpa, M.B.; Tsado, A.N.; Muhammad, S.S. Nutritional and anti-nutritional composition of date palm (Phoenix dactylifera L.) fruits sold in major markets of Minna Niger State, Nigeria. Afr. J. Pure Appl. Chem. 2015, 9, 167–174. [Google Scholar]
- Aamer, R.A. Characteristics of aqueous doum fruit extract and its utilization in some novel products. Ann. Agric. Sci. 2016, 61, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Beskow, G.T.; Hoffmann, J.F.; Teixeira, A.M.; Fachinello, J.C.; Chaves, F.C.; Rombaldi, C.V. Bioactive and yield potential of jelly palms (Butia odorata Barb. Rodr.). Food Chem. 2015, 172, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Filho, C.D.; Honório, S.L.; Gil, J.M. Qualidade pós-colheita de cerejas cv. Ambrunés utilizando coberturas comestíveis. Rev. Bras. Frutic. 2006, 28, 180–184. [Google Scholar] [CrossRef]
- Chitarra, M.I.F.; Chitarra, A.B. Pós-Colheita de Frutos e Hortaliças: Fisiologia e, Pós-colheita de Frutos e Hortaliças: Fisiologia e Manuseio, 1st ed.; Federal University of Lavras: Lavras, Brazil, 1990. [Google Scholar]
- Schwartz, E.; Fachinello, J.C.; Barbieri, R.L.; da Silva, J.B. Avaliação de populações de Butia capitata de Santa Vitória do Palmar. Rev. Bras. Frutic. 2010, 32, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Santas, J.; Carbó, R.; Gordon, M.; Almajano, M. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 2008, 107, 1210–1216. [Google Scholar] [CrossRef]
- Lv, S.; Taha, A.; Hu, H.; Lu, Q.; Pan, S. Effects of Ultrasonic-Assisted Extraction on the Physicochemical Properties of Different Walnut Proteins. Molecules 2019, 24, 4260. [Google Scholar] [CrossRef] [Green Version]
- Bouhafsoun, A.; Yilmaz, M.A.; Boukeloua, A.; Temel, H.; Harche, M.K. Simultaneous quantification of phenolic acids and flavonoids in Chamaerops humilis L. using LC–ESI-MS/MS. Food Sci. Technol. 2018, 38, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.; Katselis, G.S.; Laarveld, B.; Barl, B. Isolation and evaluation of immunological adjuvant activities of saponins from Polygala senega L. Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 27–43. [Google Scholar] [CrossRef]
- Just, M.J.; Recio, M.C.; Giner, R.M.; Cuéllar, M.J.; Máñez, S.; Bilia, A.R.; Ríos, J.-L. Anti-Inflammatory Activity of Unusual Lupane Saponins from Bupleurum fruticescens. Planta Med. 1998, 64, 404–407. [Google Scholar] [CrossRef] [PubMed]
- El Cadi, H.; El Bouzidi, H.; Selama, G.; El Cadi, A.; Ramdan, B.; Oulad El Majdoub, Y.; Alibrando, F.; Dugo, P.; Mondello, L.; Fakih Lanjri, A.; et al. Physico-Chemical and Phytochemical Characterization of Moroccan Wild Jujube “Zizyphus lotus (L.)” Fruit Crude Extract and Fractions. Molecules 2020, 25, 5237. [Google Scholar] [CrossRef] [PubMed]
- Belhaoues, S.; Amri, S.; Bensouilah, M.; Seridi, R. Antioxidant, antibacterial activities and phenolic content of organic frac-tions obtained from Chamaerops humilis L. leaf and fruit. Int. J. Biosci. 2017, 11, 284–297. [Google Scholar]
- Khoudali, S.; Benmessaoudleft, D.; Essaqui, A.; Zertoubi, M.; Mohammed, A.; Benaissa, B. Study of antioxidant activity and anticorrosion action of the methanol extract of dwarf palm leaves (Chamaerops humilis L.) from morocco. J. Mater. Environ. Sci. 2014, 5, 887–898. [Google Scholar]
- Coelho, J.P.; Veiga, J.G.; Elvas-Leitao, R.; Brigas, A.F.; Dias, A.M.; Oliveira, M.C. Composition and in vitro antioxidants ac-tivity of Chamaerops humilis L. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [Google Scholar]
- Chung-Weng, P.; Abd Malek, S.N.; Ibrahim, H.; Wahab, N.A. Antioxidant properties of crude and fractionated extracts of Alpinia mutica rhizomes and their total phenolic content. Afr. J. Pharm. Pharmacol. 2011, 5, 842–852. [Google Scholar]
- Mokbli, S.; Sbihi, H.M.; Nehdi, I.A.; Romdhani-Younes, M.; Tan, C.P.; Al-Resayes, S.I. Characteristics of Chamaerops humilis L. var. humilis seed oil and study of the oxidative stability by blending with soybean oil. J. Food Sci. Technol. 2018, 55, 2170–2179. [Google Scholar] [CrossRef]
- Giovino, A.; Marino, P.; Domina, G.; Rapisarda, P.; Rizza, G.; Saia, S. Fatty acid composition of the seed lipids of Chamaerops humilis L. natural populations and its relation with the environment. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2014, 149, 767–776. [Google Scholar] [CrossRef]
- Khallouki, F.; Ricarte, I.; Breuer, A.; Owen, R.W. Characterization of phenolic compounds in mature Moroccan Medjool date palm fruits (Phoenix dactylifera) by HPLC–PDA-ESI-MS. J. Food Comp. Anal. 2018, 70, 63–71. [Google Scholar] [CrossRef]
- Ma, C.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
Fruit | Crude Extract | Solvent Fractions | |
---|---|---|---|
EtOAc | MeOH-H2O | ||
pH | 3.0 ± 0.06 | − | − |
Acidity | 1.5 ± 0.28 | − | − |
RI | 1.4 ± 0.10 | 1.3 ± 0.00 | 1.3 ± 0.00 |
TSS | 15.2 ± 0.68 | 0.4 ± 0.01 | 3.0 ± 0.01 |
S/A | 10.3 ± 0.5 | − | − |
DM (%) | 69.5 ± 0.51 | − | − |
Ash (%) | 3.0 ± 0.31 | − | − |
TS (%) | 23.7 ± 0.86 | 6.4 ± 0.05 | 4.6 ± 0.10 |
RS (%) | 18.1 ± 0.72 | − | − |
Lipids(mg/g) | 0.70 ± 0.05 | − | − |
Proteins(mg/g) | 5.33 ± 1.5 | − | 0.6 ± 0.01 |
Vitamin C (mg/g) | 31.4 ± 0.53 | 13.6 ± 0.45 | 30 ± 0.28 |
Compounds Group/Solvent of Extraction | Crude Extract | EtOAc | MeOH-H2O | |
---|---|---|---|---|
Alkaloids | + | + | ± | |
Polyphenols | Flavonoids | B | B | A++ |
Tannins | + | + | + | |
Anthocyanins | − | − | − | |
Catechic tannins | ++ | − | + | |
Gallic tannins | − | − | + | |
Coumarins | + | + | + | |
Anthracenosides | ++ | − | − | |
Anthraquinones | + | − | − | |
Anthracenosides and Anthocyanosides | + | − | − | |
Steroids | Saponosides | ++ | - | − |
Unsaturated Sterols/Terpenes | − | + | − | |
Sterols and Steroids | ++ | − | − | |
Sugars | Starch | + | − | − |
Deoxysugars | + | − | − | |
Glycosides | − | + | ± | |
Mucilages | + | − | + |
Extract | TPP | TFv | TT | IC50 |
---|---|---|---|---|
EtOAc | 3.6 ± 0.5 | 6.5 ± 0.1 | 6.2 ± 0.5 | 1.9 ± 0.1 |
MeOH-H2O | 32.7 ± 0.1 | 11.1 ± 0.45 | 54.3 ± 0.8 | 0.4 ± 0.1 |
No. | Compound | LRI (lib) | LRI (exp) | Similarity | Area(%) | Library |
---|---|---|---|---|---|---|
1 | n-Hexanol | 867 | 867 | 90 | 0.04 | FFNSC 4.0 |
2 | Acetonylacetone | 923 | 925 | 90 | 0.11 | FFNSC 4.0 |
3 | n-Hexanoic acid | 997 | 977 | 96 | 0.31 | FFNSC 4.0 |
4 | n-Nonanal | 1107 | 1106 | 96 | 0.27 | FFNSC 4.0 |
5 | n-Octanoic acid | 1192 | 1171 | 94 | 0.19 | FFNSC 4.0 |
6 | n-Decanal | 1208 | 1207 | 91 | 0.06 | FFNSC 4.0 |
7 | (2E)-Decenal | 1265 | 1264 | 92 | 0.06 | FFNSC 4.0 |
8 | Nonanoic acid | 1289 | 1269 | 92 | 0.13 | FFNSC 4.0 |
9 | (2E,4E)-Decadienal | 1322 | 1296 | 93 | 0.41 | FFNSC 4.0 |
10 | n-Decanoic acid | 1398 | 1366 | 93 | 0.15 | FFNSC 4.0 |
11 | ethyl-Decanoate | 1399 | 1395 | 93 | 0.08 | FFNSC 4.0 |
12 | (E)-, β-Ionone | 1482 | 1482 | 87 | 0.07 | FFNSC 4.0 |
13 | methyl-Dodecanoate | 1527 | 1524 | 88 | 0.03 | FFNSC 4.0 |
14 | 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-,(R)-2(4H)-Benzofuranone | 1532 | 1533 | 90 | 0.46 | W11N17 |
15 | n-Dodecanoic acid | 1581 | 1563 | 94 | 0.18 | FFNSC 4.0 |
16 | ethyl-Dodecanoate | 1598 | 1594 | 89 | 0.11 | FFNSC 4.0 |
17 | n-Hexadecane | 1600 | 1600 | 87 | 0.03 | FFNSC 4.0 |
18 | n-Tetradecanal | 1614 | 1614 | 91 | 0.13 | FFNSC 4.0 |
19 | 1.1’-oxybis-Octane | 1657 | 1663 | 88 | 0.10 | W11N17 |
20 | n-Heptadecane | 1700 | 1700 | 90 | 0.17 | FFNSC 4.0 |
21 | 2-Pentadecanol | 1710 | 1707 | 92 | 0.05 | W11N17 |
22 | Pentadecanal | 1717 | 1716 | 90 | 0.08 | W11N17 |
23 | methyl-Tetradecanoate | 1727 | 1725 | 87 | 0.03 | FFNSC 4.0 |
24 | n-Tetradecanoic acid | 1773 | 1762 | 87 | 0.23 | FFNSC 4.0 |
25 | ethyl-Tetradecanoate | 1794 | 1793 | 93 | 0.22 | FFNSC 4.0 |
26 | n-Octadecane | 1800 | 1800 | 91 | 0.09 | FFNSC 4.0 |
27 | Hexadecanal | 1820 | 1818 | 93 | 0.09 | W11N17 |
28 | Pentadecanoic acid, methyl ester | 1824 | 1825 | 88 | 0.11 | W11N17 |
29 | Neophytadiene | 1836 | 1836 | 92 | 0.10 | FFNSC 4.0 |
30 | Phytone | 1841 | 1842 | 94 | 0.19 | FFNSC 4.0 |
31 | Pentadecylic acid | 1869 | 1863 | 90 | 0.11 | FFNSC 4.0 |
32 | ethyl-Pentadecanoate | 1893 | 1893 | 91 | 0.09 | FFNSC 4.0 |
33 | n-Nonadecane | 1900 | 1900 | 90 | 0.13 | FFNSC 4.0 |
34 | (Z)-9-Hexadecenoic acid, methyl ester | 1895 | 1903 | 93 | 0.14 | W11N17 |
35 | methyl-Hexadecanoate | 1925 | 1926 | 95 | 1.62 | FFNSC 4.0 |
36 | Hexadecanolact-16-one | 1938 | 1943 | 88 | 0.77 | FFNSC 4.0 |
37 | n-Hexadecanoic acid | 1977 | 1969 | 94 | 21.75 | FFNSC 4.0 |
38 | ethyl-Palmitate | 1993 | 1993 | 96 | 3.80 | FFNSC 4.0 |
39 | Heptadecanoic acid, methyl ester | 2028 | 2026 | 90 | 0.06 | W11N17 |
40 | Heptadecanoic acid | 2080 | 2064 | 94 | 0.33 | W11N17 |
41 | methyl-Linoleate | 2093 | 2093 | 90 | 1.57 | FFNSC 4.0 |
42 | methyl-Oleate | 2098 | 2098 | 92 | 2.61 | FFNSC 4.0 |
43 | methyl-Octadecanoate | 2127 | 2127 | 89 | 0.11 | FFNSC 4.0 |
44 | Linoleic acid | 2144 | 2137 | 92 | 6.90 | FFNSC 4.0 |
45 | Oleic acid | 2142 | 2145 | 89 | 14.66 | FFNSC 4.0 |
46 | (Z)-Vaccenic acid | 2161 | 2148 | 92 | 4.03 | W11N17 |
47 | ethyl-Linoleate | 2164 | 2160 | 92 | 5.04 | FFNSC 4.0 |
48 | (E)-9-Octadecenoic acid ethyl ester | 2174 | 2173 | 92 | 2.10 | W11N17 |
49 | ethyl-Stearate | 2198 | 2194 | 91 | 0.53 | FFNSC 4.0 |
50 | n-Tricosane | 2300 | 2300 | 90 | 0.22 | FFNSC 4.0 |
51 | (Z)-9-Octadecenamide | 2375 | 2362 | 94 | 1.69 | W11N17 |
52 | n-Tetracosane | 2400 | 2400 | 88 | 0.12 | FFNSC 4.0 |
53 | Behenyl alcohol | 2493 | 2495 | 89 | 0.19 | FFNSC 4.0 |
54 | n-Pentacosane | 2500 | 2500 | 93 | 0.31 | FFNSC 4.0 |
55 | 1-Hexacosene | 2596 | 2595 | 90 | 0.54 | W11N17 |
56 | n-Hexacosane | 2600 | 2599 | 93 | 0.19 | FFNSC 4.0 |
57 | Heptacos-1-ene | 2694 | 2695 | 89 | 0.33 | W11N17 |
58 | n-Heptacosane | 2700 | 2700 | 92 | 0.88 | FFNSC 4.0 |
59 | n-Octacosane | 2800 | 2799 | 89 | 0.16 | FFNSC 4.0 |
60 | Squalene | 2810 | 2813 | 94 | 1.15 | FFNSC 4.0 |
61 | Hexacosanal | 2833 | 2840 | 93 | 0.41 | W11N17 |
62 | n-Nonacosane | 2900 | 2900 | 90 | 0.50 | FFNSC 4.0 |
63 | Octacosanal | 3039 | 3044 | 95 | 0.65 | W11N17 |
64 | γ-Tocopherol | 3055 | 3053 | 88 | 0.15 | W11N17 |
65 | n-Hentriacontane | 3100 | 3100 | 92 | 0.13 | FFNSC 4.0 |
66 | Octacosanol | 3120 | 3109 | 94 | 0.68 | W11N17 |
67 | 2-Nonacosanone | 3125 | 3123 | 91 | 2.16 | W11N17 |
68 | Vitamin E | 3130 | 3131 | 93 | 2.07 | W11N17 |
69 | γ-Sitosterol | 3351 | 3321 | 90 | 4.13 | W11N17 |
Tot. identified | 87.29 | |||||
Tot. not identified | 12.71 |
Tentative Identification | tR (min) | Identification Type | λMAX (nm) | [M-H]− | Fragments |
---|---|---|---|---|---|
Phenolic Acid and Derivatives | |||||
Quinic acid | 1.64 | PDA/MS | − | 191 | − |
Cinnamoyl glucose | 8.31 | PDA/MS | 258–291 | 309 | − |
Chlorogenic acid | 10.31 | PDA/MS | 324 | 353 | 179 |
3-Caffeoylquinic acid | 14.15 | PDA/MS | 321 | 353 | − |
Feruloylquinic acid | 15.29 | PDA/MS | 324 | 367 | − |
5-Caffeoylquinic acid | 15.83 | PDA/MS | 213–324 | 353 | 179 |
Unknown | 19.13 | PDA/MS | 282–325 | 336 | − |
Ferulic acid hexoside | 20.51 | PDA/MS | 214–324 | 355 | 191 |
p-coumaric acid | 22.74 | PDA/MS | 288 | 163 | − |
Ferulic acid | 24.16 | PDA/MS | 216–321 | 193 | − |
Unknown | 25.66 | PDA/MS | 304 | 193 | − |
dicaffeoylshikimic acid | 28.54 | PDA/MS | 217–291 | 497 | 179 |
p-Coumaric acid ethyl ester | 32.46 | PDA/MS | 247–291 | 191 | − |
Unknown | 36.22 | PDA/MS | 270 | 345 | 263 |
Flavonols | |||||
Rutin | 27.86 | PDA/MS | 352 | 609 | − |
Kaempferol | 48.18 | PDA/MS | 219–369 | 285 | − |
Tentative Identification | tR (min) | Identification Type | λMAX (nm) | [M-H]− | Fragments |
---|---|---|---|---|---|
Phenolic Acid and Derivatives | |||||
Quinic acid | 1.64 | PDA/MS | − | 191 | − |
Cinnamoyl glucose | 8.31 | PDA/MS | 258–291 | 309 | − |
Chlorogenic acid | 10.31 | PDA/MS | 324 | 353 | 179 |
3-Caffeoylquinic acid | 14.15 | PDA/MS | 321 | 353 | − |
Feruloylquinic acid | 15.29 | PDA/MS | 324 | 367 | − |
5-Caffeoylquinic acid | 15.83 | PDA/MS | 213–324 | 353 | 179 |
Unknown | 19.13 | PDA/MS | 282–325 | 336 | − |
Ferulic acid hexoside | 20.51 | PDA/MS | 214–324 | 355 | 191 |
p-coumaric acid | 22.74 | PDA/MS | 288 | 163 | − |
Ferulic acid | 24.16 | PDA/MS | 216–321 | 193 | − |
Dicaffeoylshikimic acid | 28.54 | PDA/MS | 217–291 | 497 | 179 |
Flavonols | |||||
Rutin | 27.86 | PDA/MS | 352 | 609 | − |
Isorhamnetin-diglucoside | 31.75 | PDA/MS | 353 | 623 | − |
Compounds | EtOAc | MeOH-H2O | Standard Used for Semi-Quantification |
---|---|---|---|
Phenolic Acid and Derivatives | |||
Quinic acid | 6.3 ± 0.02 | 37.0 ± 0.36 | Gallic acid |
Cinnamoyl glucose | 8.1 ± 0.40 | 0.3 ± 0.03 | Cinnamic acid |
Chlorogenic acid | 18.8 ± 0.90 | 45.4 ± 1.59 | Caffeic acid |
3-Caffeoylquinic acid | 16.6 ± 0.30 | 22.4 ± 0.14 | Ferulic acid |
Feruloylquinic acid | 26.3 ± 1.02 | 12.4 ± 0.07 | Ferulic acid |
5-Caffeoylquinic acid | 36.5 ± 1.05 | 20.3 ± 0.62 | Caffeic acid |
Ferulic acid hexoside | 12.9 ± 0.82 | 20.3 ± 0.21 | Ferulic acid |
p-coumaric acid | 11.3 ± 0.50 | 0.4 ± 0.01 | Coumarin |
Ferulic acid | 104.7 ± 2.52 | 20.6 ± 0.9 | Ferulic acid |
Dicaffeoylshikimic acid | 7.5 ± 0.10 | 10.1 ± 0.5 | Caffeic acid |
p-Coumaric acid ethyl ester | 12.7 ± 0.12 | − | Coumarin |
Flavonols | |||
Rutin | 17.7 ± 0.03 | 60.2 ± 1.9 | Rutin |
Isorhamnetin-diglucoside | − | 12.8 ± 0.8 | Kaempferol |
Kaempferol | 15.0 ± 0.93 | − | Kaempferol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadi, H.E.; Bouzidi, H.E.; Selama, G.; Ramdan, B.; Majdoub, Y.O.E.; Alibrando, F.; Arena, K.; Lovillo, M.P.; Brigui, J.; Mondello, L.; et al. Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques. Molecules 2021, 26, 2710. https://doi.org/10.3390/molecules26092710
Cadi HE, Bouzidi HE, Selama G, Ramdan B, Majdoub YOE, Alibrando F, Arena K, Lovillo MP, Brigui J, Mondello L, et al. Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques. Molecules. 2021; 26(9):2710. https://doi.org/10.3390/molecules26092710
Chicago/Turabian StyleCadi, Hafssa El, Hajar El Bouzidi, Ginane Selama, Btissam Ramdan, Yassine Oulad El Majdoub, Filippo Alibrando, Katia Arena, Miguel Palma Lovillo, Jamal Brigui, Luigi Mondello, and et al. 2021. "Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques" Molecules 26, no. 9: 2710. https://doi.org/10.3390/molecules26092710
APA StyleCadi, H. E., Bouzidi, H. E., Selama, G., Ramdan, B., Majdoub, Y. O. E., Alibrando, F., Arena, K., Lovillo, M. P., Brigui, J., Mondello, L., Cacciola, F., & Salerno, T. M. G. (2021). Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques. Molecules, 26(9), 2710. https://doi.org/10.3390/molecules26092710