Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms
Abstract
:1. Introduction
2. Synthesis of Ternary Quantum Dots
2.1. Aqueous Synthesis of Quantum Dots
2.1.1. Microwave Synthesis of QDs
2.1.2. Solvothermal Synthesis
2.1.3. Transfer of QDs to Aqueous Media
2.1.4. Synthesis of Core/Shell Quantum Dots
3. Sensing Schemes
3.1. Photoinduced Electron Transfer
3.2. Förster Resonance Energy Transfer
3.3. Other Mechanisms
3.4. Enhancing Mechanisms
3.5. Functionalization of QDs
4. Application of Ternary QDs in Chemical Analysis
5. Conclusions and Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Reshma, V.G.; Mohanan, P.V. Quantum dots: Applications and safety consequences. J. Lumin. 2019, 205, 287–298. [Google Scholar] [CrossRef]
- Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013, 67, 215–252. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, C.; Ribeiro, D.S.; Rodrigues, S.S.M.; Abreu, V.L.; Barbosa, J.A.; Prior, J.A.; Santos, J.L. Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta 2012, 735, 9–22. [Google Scholar] [CrossRef]
- Badıllı, U.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Anal. Chem. 2020, 131, 116013. [Google Scholar] [CrossRef]
- Bonilla, J.C.; Bozkurt, F.; Ansari, S.; Sozer, N.; Kokini, J.L. Applications of quantum dots in food science and biology. Trends Food Sci. Technol. 2016, 53, 75–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, Z.; Zeng, G.; Xiao, R.; Wang, Y.; Feng, C. Sensors for the environmental pollutant detection: Are we already there? Coord. Chem. Rev. 2021, 431, 213681. [Google Scholar] [CrossRef]
- Donegan, J.; Rakovich, Y. Cadmium Telluride Quantum Dots: Advances and Applications; CRC Press: Boca Raton, FL, USA, 2013; pp. 206–229. [Google Scholar]
- Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 2009, 105, 073106. [Google Scholar] [CrossRef]
- Jain, S.; Bharti, S.; Bhullar, G.K.; Tripathi, S.K. I-III-VI core/shell QDs: Synthesis, characterizations and applications. J. Lumin. 2020, 219, 116912. [Google Scholar] [CrossRef]
- Rodrigues, S.S.M.; Ribeiro, D.S.; Soares, J.X.; Passos, M.L.; Saraiva, M.L.M.; Santos, J.L. Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coord. Chem. Rev. 2017, 330, 127–143. [Google Scholar] [CrossRef]
- Callan, J.; Raymo, F.M. Quantum Dot Sensors: Technology and Commercial Applications; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–42. [Google Scholar]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Dhawan, A.; Karhana, S.; Bhat, M.; Dinda, A.K. Quantum Dots: An Emerging Tool for Point-of-Care Testing. Micromachines 2020, 11, 1058. [Google Scholar] [CrossRef]
- Kumar, R.; Panda, D.; Das, D.; Chatterjee, A.; Tongbram, B.; Saha, J.; Chakrabarti, S. Realization of high-quality InGaAs/GaAs quantum dot growth on Ge substrate and improvement of optical property through ex-situ ion implantation. J. Lumin. 2020, 117208. [Google Scholar] [CrossRef]
- Zhang, M.; Moore, J.; Mi, Z.; Bhattacharya, P. Polarization effects in self-organized InGaN/GaN quantum dots grown by RF-plasma-assisted molecular beam epitaxy. J. Cryst. Growth 2009, 311, 2069–2072. [Google Scholar] [CrossRef]
- Nandwana, V.; Subramani, C.; Yeh, Y.C.; Yang, B.; Dickert, S.; Barnes, M.D.; Rotello, V.M. Direct patterning of quantum dot nanostructures via electron beam lithography. J. Mater. Chem. 2011, 21, 16859–16862. [Google Scholar] [CrossRef]
- Gustafsson, A.; Björk, M.T.; Samuelson, L. Locating nanowire heterostructures by electron beam induced current. Nanotechnology 2007, 18, 205306. [Google Scholar] [CrossRef]
- Dieleman, C.D.; Ding, W.; Wu, L.; Thakur, N.; Bespalov, I.; Daiber, B.; Ehrler, B. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale 2020, 12, 11306–11316. [Google Scholar] [CrossRef] [PubMed]
- Kiravittaya, S.; Rastelli, A.; Schmidt, O.G. Self-assembled InAs quantum dots on patterned GaAs (001) substrates: Formation and shape evolution. Appl. Phys. Lett. 2005, 87, 243112. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Yanguas-Gil, A. Physical and Chemical Vapor Deposition Techniques. In Growth and Transport in Nanostructured Materials; Yanguas-Gil, A., Ed.; Springer: Cham, Switzerland, 2017; Volume 1, pp. 19–37. [Google Scholar]
- Tasco, V.; Potì, B.; De Vittorio, M.; De Giorgi, M.; Cingolani, R.; Passaseo, A. Improved performances of 1.3 μm InGaAs QD structures grown at high temperature by metal organic chemical vapour deposition. Microelectron. J. 2005, 36, 180–182. [Google Scholar] [CrossRef]
- Feng, Z.C.; Zhu, L.H.; Kuo, T.W.; Wu, C.Y.; Tsai, H.L.; Liu, B.L.; Yang, J.R. Optical and structural studies of dual wavelength InGaN/GaN tunnel-injection light emitting diodes grown by metalorganic chemical vapor deposition. Thin Solid Films 2013, 529, 269–274. [Google Scholar] [CrossRef]
- Kumar, M.M.D.; Devadason, S. Evidence for quantum confinement effects in CdSe/ZnSe multilayer thin films prepared by the physical vapor deposition method. Acta Mater. 2013, 61, 4135–4141. [Google Scholar] [CrossRef]
- Salii, R.A.; Mintairov, M.A.; Mintairov, S.A.; Nadtochiy, A.M.; Kalyuzhnyy, N.A. Comparative analysis of the optical and physical properties of InAs and In0.8Ga0.2As quantum dots. J. Phys. Conf. Ser. 2020, 1697, 012107. [Google Scholar] [CrossRef]
- Varshney, S.; Agarwal, Y.; Kalaichelvi, P. A review of quantum dot solar cells fabrication via chemical vapor deposition method. AIP Conf. Proc. 2020, 2235, 020002. [Google Scholar]
- Jha, M. Current Trends in Industrial Scale Synthesis of Quantum Dots and Its Application in Electronics. In Handbook of Nanomaterials for Industrial Applications, 1st ed.; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 381–385. [Google Scholar]
- Reiss, P. Synthesis of semiconductor nanocrystals in organic solvents. In Semiconductor Nanocrystal Quantum Dots, 1st ed.; Rogach, A.L., Ed.; Springer: Vienna, Austria, 2008; Volume 1, pp. 35–72. [Google Scholar]
- Sinatra, L.; Pan, J.; Bakr, O.M. Methods of synthesizing monodisperse colloidal quantum dots. Mater. Matters 2017, 12, 3–7. [Google Scholar]
- Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929. [Google Scholar] [CrossRef] [PubMed]
- Tsolekile, N.; Parani, S.; Matoetoe, M.C.; Songca, S.P.; Oluwafemi, O.S. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct. Nano-Objects 2017, 12, 46–56. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, Z.; Liu, X.; Zhang, Y.; Zou, B.; Zhong, H. Small GSH-Capped CuInS2 quantum Dots: MPA-assisted aqueous phase transfer and bioimaging applications. ACS Appl. Mater. Interfaces 2015, 7, 17623–17629. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, Y.; Zhang, Z.; Huang, Z.; Lian, L.; Miao, X.; Zhang, J. Combination of cation exchange and quantized ostwald ripening for controlling size distribution of lead chalcogenide quantum dots. Chem. Mater. 2017, 29, 3615–3622. [Google Scholar] [CrossRef]
- Epps, R.W.; Bowen, M.S.; Volk, A.A.; Abdel-Latif, K.; Han, S.; Reyes, K.G.; Abolhasani, M. Artificial chemist: An autonomous quantum dot synthesis bot. Adv. Mater. 2020, 32, 2001626. [Google Scholar] [CrossRef]
- Lesnyak, V.; Gaponik, N.; Eychmüller, A. Aqueous Synthesis of Colloidal CdTe Nanocrystals. In Aqueous Synthesis of Colloidal CdTe Nanocrystals Book, 1st ed.; Donegan, J., Rakovich, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2013; Volume 1, pp. 23–60. [Google Scholar]
- He, Y.; Lu, H.T.; Sai, L.M.; Su, Y.Y.; Hu, M.; Fan, C.H.; Wang, L.H. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 2008, 20, 3416–3421. [Google Scholar] [CrossRef]
- Mei, S.; Zhu, J.; Yang, W.; Wei, X.; Zhang, W.; Chen, Q.; Guo, R. Tunable emission and morphology control of the Cu-In-S/ZnS quantum dots with dual stabilizer via microwave-assisted aqueous synthesis. J. Alloys Compd. 2017, 729, 1–8. [Google Scholar] [CrossRef]
- Soares, J.X.; Wegner, K.D.; Ribeiro, D.S.; Melo, A.; Häusler, I.; Santos, J.L.; Resch-Genger, U. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Res. 2020, 13, 2438–2450. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Huang, L.; Pan, D. Low-cost and gram-scale synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale 2014, 6, 1295–1298. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Qiao, Y.; Su, X. One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Adv. 2012, 2, 819–825. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuator B-Chem. 2018, 258, 1191–1214. [Google Scholar]
- Girma, W.M.; Fahmi, M.Z.; Permadi, A.; Abate, M.A.; Chang, J.Y. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193–6216. [Google Scholar] [CrossRef]
- Vasudevan, D.; Gaddam, R.R.; Trinchi, A.; Cole, I. Core–shell quantum dots: Properties and applications. J. Alloys Compd. 2015, 636, 395–404. [Google Scholar] [CrossRef]
- Nakamura, Y.; Iso, Y.; Isobe, T. Bandgap-Tuned CuInS2/ZnS Core/Shell Quantum Dots for a Luminescent Downshifting Layer in a Crystalline Silicon Solar Module. ACS Appl. Nano Mater. 2020, 3, 3417–3426. [Google Scholar] [CrossRef]
- Park, Y.J.; Oh, J.H.; Han, N.S.; Yoon, H.C.; Park, S.M.; Do, Y.R.; Song, J.K. Photoluminescence of band gap states in AgInS2 nanoparticles. J. Phys. Chem. C 2014, 118, 25677–25683. [Google Scholar] [CrossRef]
- Shabaev, A.; Mehl, M.J.; Efros, A.L. Energy band structure of CuInS2 and optical spectra of CuInS2 nanocrystals. Phys. Rev. B 2015, 92, 035431. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Ogawa, S.; Kameyama, T.; Okazaki, K.I.; Kudo, A.; Kuwabata, S.; Torimoto, T. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. J. Mater. Chem. 2012, 22, 12851–12858. [Google Scholar] [CrossRef]
- Tsolekile, N.; Parani, S.; Vuyelwa, N.; Maluleke, R.; Matoetoe, M.; Songca, S.; Oluwafemi, O.S. Synthesis, structural and fluorescence optimization of ternary Cu–In–S quantum dots passivated with ZnS. J. Lumin. 2020, 227, 117541. [Google Scholar] [CrossRef]
- Jia, L.; Wang, Y.; Nie, Q.; Liu, B.; Liu, E.; Hu, X.; Fan, J. Aqueous-synthesis of CuInS2 core and CuInS2/ZnS core/shell quantum dots and their optical properties. Mater. Lett. 2017, 200, 27–30. [Google Scholar] [CrossRef]
- Parani, S.; Oluwafemi, O.S. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 2020, 31, 395501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhu, J.; Zhang, Z. Selective detection of glufosinate using CuInS2 quantum dots as a fluorescence probe. RSC Adv. 2017, 7, 48077–48082. [Google Scholar] [CrossRef] [Green Version]
- Mi, G.; Shi, H.; Yang, M.; Wang, C.; Hao, H.; Fan, J. Efficient detection doxorubicin hydrochloride using CuInSe2@ZnS quantum dots and Ag nanoparticles. Spectrochim. Acta A 2020, 241, 118673. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, P.; Deng, X.; Sun, Y.; Wang, X.; Song, D. Enzymatic determination of uric acid using water-soluble CuInS/ZnS quantum dots as a fluorescent probe. Microchim. Acta 2018, 185, 1–8. [Google Scholar] [CrossRef]
- Regulacio, M.D.; Win, K.Y.; Lo, S.L.; Zhang, S.Y.; Zhang, X.; Wang, S.; Zheng, Y. Aqueous synthesis of highly luminescent AgInS2–ZnS quantum dots and their biological applications. Nanoscale 2013, 5, 2322–2327. [Google Scholar] [CrossRef]
- May, B.M.; Parani, S.; Oluwafemi, O.S. Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Mater. Lett. 2019, 236, 432–435. [Google Scholar] [CrossRef]
- Yuan, B.; Cai, X.; Fang, X.; Wang, D.; Cao, S.; Zhu, R.; Liu, J. One-Step Synthesis of Water-Soluble Quantum Dots from Ag2S and AgInS2 QDs. Cryst. Growth Des. 2020, 20, 4204–4211. [Google Scholar] [CrossRef]
- Tang, X.; Ho, W.B.A.; Xue, J.M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 2012, 116, 9769–9773. [Google Scholar] [CrossRef]
- Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of donor–acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J. Phys. Chem. C 2014, 118, 14562–14568. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Zha, T.; Min, J.; Gao, J.; Zhou, C.; Li, S. Green and facile synthesis of high-quality water-soluble Ag-In-S/ZnS core/shell quantum dots with obvious bandgap and sub-bandgap excitations. J. Alloys Compd. 2018, 753, 364–370. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Su, X. Determination of copper (ii) and cadmium (ii) based on ternary CuInS2 quantum dots. Anal. Methods 2012, 4, 1365–1370. [Google Scholar] [CrossRef]
- Kang, X.; Yang, Y.; Huang, L.; Tao, Y.; Wang, L.; Pan, D. Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots. Green Chem. 2015, 17, 4482–4488. [Google Scholar] [CrossRef]
- Oluwafemi, O.S.; May, B.M.; Parani, S.; Tsolekile, N. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mater. Sci. Eng. C 2020, 106, 110181. [Google Scholar] [CrossRef] [PubMed]
- Frasco, M.F.; Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 2009, 9, 7266–7286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snee, P.T. Semiconductor quantum dot FRET: Untangling energy transfer mechanisms in bioanalytical assays. Trends Anal. Chem. 2020, 123, 115750. [Google Scholar] [CrossRef]
- Chang, J.Y.; Wang, G.Q.; Cheng, C.Y.; Lin, W.X.; Hsu, J.C. Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes. J. Mater. Chem. 2012, 22, 10609–10618. [Google Scholar] [CrossRef]
- Ji, X.; Makarov, N.S.; Wang, W.; Palui, G.; Robel, I.; Mattoussi, H. Tuning the Redox Coupling between Quantum Dots and Dopamine in Hybrid Nanoscale Assemblies. J. Phys. Chem. C 2015, 119, 3388–3399. [Google Scholar] [CrossRef]
- Ji, X.; Wang, W.; Mattoussi, H. Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today 2016, 11, 98–121. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.C.; Ribeiro, D.S.; Páscoa, R.N.; Soares, J.X.; Mazivila, S.J.; Santos, J.L. Dual-emission CdTe/AgInS2 photoluminescence probe coupled to neural network data processing for the simultaneous determination of folic acid and iron (II). Anal. Chim. Acta 2020, 1114, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shi, F.; Chen, L.; Su, X. Tyrosine-functionalized CuInS2 quantum dots as a fluorescence probe for the determination of biothiols, histidine and threonine. Analyst 2013, 138, 5819–5825. [Google Scholar] [CrossRef]
- Shi, H.; Jia, L.; Wang, C.; Liu, E.; Ji, Z.; Fan, J. A high sensitive and selective fluorescent probe for dopamine detection based on water soluble AgInS2 quantum dots. Opt. Mater. 2020, 99, 109549. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Abad-Fuentes, A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens. Bioelectron. 2013, 41, 12–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, K.F.; Dennis, A.M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors 2015, 15, 13288–13325. [Google Scholar] [CrossRef]
- Shamirian, A.; Ghai, A.; Snee, P.T. QD-based FRET probes at a glance. Sensors 2015, 15, 13028–13051. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.C.; Lopes, A.F.; Soares, J.X.; Ribeiro, D.S.; Santos, J.L. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS2 quantum dots and Au nanoparticles. Analyst 2021, 146, 1004–1015. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Tkach, A.; Cherevkov, S.; Sokolova, A.; Gromova, Y.; Osipova, V.; Baranov, A. Spectral-Time Multiplexing in FRET Complexes of AgInS2/ZnS Quantum Dot and Organic Dyes. Nanomaterials 2020, 10, 1569. [Google Scholar] [CrossRef]
- Kilina, S.V.; Tamukong, P.K.; Kilin, D.S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 2016, 49, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Giansante, C.; Infante, I. Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective. J. Phys. Chem. Lett. 2017, 8, 5209–5215. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Yin, P.; He, Y. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion. Anal. Chim. Acta 2012, 745, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. 2008, 47, 7602–7625. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Qiu, L.; Wu, Y.; Hu, X.; Zhang, X. Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors 2017, 17, 1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Na, W.; Yan, X.; Su, X. Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-Cyclodextrin-CuInS2 QDs and aptamer. Talanta 2017, 165, 194–200. [Google Scholar] [CrossRef]
- Liu, S.; Shi, F.; Chen, L.; Su, X. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2, 4, 6-trinitrophenol detection. Talanta 2013, 116, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Novikova, A.S.; Ponomaryova, T.S.; Goryacheva, I.Y. Fluorescent AgInS/ZnS quantum dots microplate and lateral flow immunoassays for folic acid determination in juice samples. Microchim. Acta 2020, 187, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, J.; Su, X. Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst 2012, 137, 4598–4604. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, M.; Zhu, T.; Tang, X.; Han, S.; Huang, W.; Liu, A. The synthesis of water-dispersible zinc doped AgInS2 quantum dots and their application in Cu2+ detection. J. Lumin. 2017, 192, 547–554. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.; Zhang, Z.; Tu, W.; Dai, Z. Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles. Biosens. Bioelectron 2019, 126, 332–338. [Google Scholar] [CrossRef]
- Wu, P.J.; Ou, K.L.; Chen, J.K.; Fang, H.P.; Tzing, S.H.; Lin, W.X.; Chang, J.Y. Methotrexate-conjugated AgInS2/ZnS quantum dots for optical imaging and drug delivery. Mater. Lett. 2014, 128, 412–416. [Google Scholar] [CrossRef]
- Delices, A.; Moodelly, D.; Hurot, C.; Hou, Y.; Ling, W.L.; Saint-Pierre, C.; Kheng, K. Aqueous synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 44026–44038. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Herrera, D.E.; Reyes-Cruzaley, A.P.; Dominguez, G.; Paraguay-Delgado, F.; Tirado-Guízar, A.; Pina-Luis, G. CdTe quantum dots modified with cysteamine: A new efficient nanosensor for the determination of folic acid. Sensors 2019, 19, 4548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Sun, X.; Liu, B. Synthesis of positively charged CdTe quantum dots and detection for uric acid. Spectrochim. Acta A 2011, 79, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, Y.X.; Zhang, F.; Li, Y. Synthesis of CuInS2 quantum dots for synchronous fluorescent assay of glutathione in foods and biological fluids. J. Photochem. Photobiol. A 2018, 356, 230–238. [Google Scholar] [CrossRef]
- Ribeiro, D.S.; Castro, R.C.; Soares, J.X.; Santos, J.L. Photocatalytic activity of AgInS2 quantum dots upon visible light irradiation for melatonin determination through its reactive oxygen species scavenging effect. Microchem. J. 2020, 155, 104728. [Google Scholar] [CrossRef]
- Rasoulzadeh, F.; Amjadi, M.; Ghorbani, M. A highly sensitive chemiluminescence assay for diniconazole by using CuInS2 quantum dots. Microchem. J. 2020, 159, 105323. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Ma, Q.; Liu, L.; Su, X. A near-infrared turn-on fluorescent nanosensor for zinc (II) based on CuInS2 quantum dots modified with 8-aminoquinoline. Microchim. Acta 2014, 181, 1385–1391. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Zhang, Q.; Liu, Y.; Yan, Y. Study on the preparation of water-soluble AgInS2 quantum dots and their application in the detection of ciprofloxacin. J. Mater. Sci. Mater. Electron. 2019, 30, 18794–18801. [Google Scholar] [CrossRef]
- Fang, J.; Dong, B.; Fu, Y.; Tang, D. Detection of sparfloxacin based on water-soluble CuInS2 quantum dots. Results Chem. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Q.; Wang, X.; Lin, Z.; Zhang, H.; Liu, L.; Su, X. A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosens. Bioelectron 2014, 54, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shi, F.; Zhao, X.; Chen, L.; Su, X. 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosens. Bioelectron 2013, 47, 379–384. [Google Scholar] [CrossRef] [PubMed]
Quantum Dots | Synthesis Strategy | Temperature-Time | Size (nm) | QY (%) | λem Max (nm) | Ref |
---|---|---|---|---|---|---|
CuInS2/ZnS | Reflux | 95 °C 45 min (core) 80 min (Shell) | 3.04 ± 0.47 | 12.3 | 708 | [48] |
CuInS2/ZnS | Reflux | 100 °C 30 min core 30 min shell | 1.8 ± 0.4 | - | 500–680 | [49] |
AgInS2/ZnS | Reflux | 95 °C 45 min core 80 min shell | 2.9 | 49.5 | 623 | [50] |
CuInS2 | Solvothermal | 150 °C 23 h | - | 19.6 | ≈400 | [51] |
CuInSe2/ZnS | Reflux | 100 °C 60 min for core 90 min for shell | 4.19 (mean) | 17.2 | 535 | [52] |
CuInS2/ZnS | Microwave | 95 °C 10 min for core 5 min for shell | 8.3 | 20.4 | 570 | [53] |
AgInS2 | Hot injection method | 90 °C 60 min | 3–8 | - | 626 | [54] |
AgInS2 | Reflux | 95 °C 45 min | 2.5 | 10.3 | 680 | [55] |
AgInS2/ZnS | Microwave | 90 °C 30 min for core 100 °C 5 min for shell | 2.7 | 60 | 625 | [38] |
Analyte | Ternary QDs | Sample | Interaction Mechanism | LOD | Ref | |
---|---|---|---|---|---|---|
Food | Folic acid | AgInS2/ZnS | Fruit juices | Inhibition of fluorescence due to an antigen-antibody interaction (Immunoassay) | 0.1 ng mL−1 | [84] |
Glutathione | CuInS2 | Tomatoes and urine | Recovery of the fluorescence quenched | 73 nM | [92] | |
Melatonin | AgInS2 | Dietary supplements | Chemiluminescence | 0.44 mg L−1 | [93] | |
Glufosinate | CuInS2 | Tea leaves | Recovery of the fluorescence quenched | 0.01 mg L−1 | [51] | |
Environmental | Diniconazole | CuInS2 | Tap water | Chemiluminescence | 1 nM | [94] |
Zn2+ | CuInS2 | Tap water | Recovery of the fluorescence quenched | 4.5 μM | [95] | |
2,4,6-Trinitrophenol | CuInS2 | Tap, spring, and waste water | Quenching of fluorescence | 28 nM | [83] | |
Cu2+ Cd2+ | CuInS2 | Tap and pond water | Cu2+: Quenching Cd2+: Enhancement | Cu2+: 0.037 mM Cd2+: 0.19 mM | [60] | |
Pharmaceutical | Ascorbic acid | CuInS2 | Vitamin C tablets | Enhancement | 0.05 mM | [85] |
Ciprofloxacin | AgInS2 | Pharmaceutical tablets | Quenching | 0.12 μg mL−1 | [96] | |
Sparfloxacin | CuInS2 | Pharmaceutical tablets | Quenching | 0.5 μg mL−1 | [97] | |
Atenolol | AgInS2/ZnS | Pharmaceutical formulations | FRET | 1.05 mg L−1 | [74] | |
Biological | Doxorubicin hydrochloride | CuInSe2/ZnS | Human serum | Quenching due to surface plasmon resonance effect | 0.05 µM | [52] |
Adenosine-5′-triphosphate | CuInS2 | Human serum | Enhancement | 3 μM | [82] | |
Heparin | CuInS2 | Fetal bovine serum | Recovery of the fluorescence quenched | 12.46 nM | [98] | |
Histidine (His) Threonine (Thr) | CuInS2 | Human serum | Recovery of the fluorescence quenched | His: 0.7 mM Thr: 2.0 mM | [69] | |
Dopamine | CuInS2 | Human serum | Quenching | 0.2 µM | [99] | |
Uric acid | CuInS2/ZnS | Human serum and urine | Enzymatic method, quenching | 50 nM | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, R.; Santos, E.M.; Galan-Vidal, C.A.; Miranda, J.M.; Lopez-Santamarina, A.; Rodriguez, J.A. Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules 2021, 26, 2764. https://doi.org/10.3390/molecules26092764
Muñoz R, Santos EM, Galan-Vidal CA, Miranda JM, Lopez-Santamarina A, Rodriguez JA. Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules. 2021; 26(9):2764. https://doi.org/10.3390/molecules26092764
Chicago/Turabian StyleMuñoz, Raybel, Eva M. Santos, Carlos A. Galan-Vidal, Jose M. Miranda, Aroa Lopez-Santamarina, and Jose A. Rodriguez. 2021. "Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms" Molecules 26, no. 9: 2764. https://doi.org/10.3390/molecules26092764
APA StyleMuñoz, R., Santos, E. M., Galan-Vidal, C. A., Miranda, J. M., Lopez-Santamarina, A., & Rodriguez, J. A. (2021). Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules, 26(9), 2764. https://doi.org/10.3390/molecules26092764