Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
3.1. Sources of Grifolin
3.2. Pharmacological Properties
Anticancer Activity
3.3. Antibacterial Activity
3.4. Antifungal Potency
3.5. Leishmanicidal Potential
3.6. Other Biological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and phytochemistry of ecuadorian medicinal plants: An update and perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef] [PubMed]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 11, 112259. [Google Scholar] [CrossRef]
- Bouyahya, A.; Guaouguaou, F.-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J. Pharm. Anal. 2021; In press. [Google Scholar] [CrossRef]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health benefits and pharmacological properties of carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; Belmehdi, O.; Salhi, N.; Imtara, H.; Mrabti, H.N.; El-Shazly, M. Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci. Technol. 2021, 115, 147–254. [Google Scholar]
- Langfield, R.D.; Scarano, F.J.; Heitzman, M.E.; Kondo, M.; Hammond, G.B.; Neto, C.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the peruvian medicinal plant Peperomia Galioides. J. Ethnopharmacol. 2004, 94, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Wilches, I.; Jiménez-Castillo, P.; Cuzco, N.; Clos, M.V.; Jiménez-Altayó, F.; Peñaherrera, E.; Jerves-Andrade, L.; Tobar, V.; Vander Heyden, Y.; Leon-Tamariz, F. Anti-inflammatory and sedative activities of Peperomia Galioides: In vivo studies in mice. Nat. Prod. Res. 2021, 35, 1657–1661. [Google Scholar] [CrossRef]
- Ye, C.; Jin, M.; Li, R.; Sun, J.; Wang, R.; Wang, J.; Li, S.; Zhou, W.; Li, G. Phytochemical and chemotaxonomic study on the leaves of Rhododendron Dauricum, L. Biochem. Syst. Ecol. 2020, 90, 104038. [Google Scholar] [CrossRef]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.-E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, toxicology, and pharmacological properties of Origanum Elongatum. Evid. Based Complement. Alternat. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum Majorana L. J. Ethnopharmacol. 2021, 265, 113318. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Chamkhi, I.; Guaouguaou, F.-E.; Benali, T.; Balahbib, A.; El Omari, N.; Taha, D.; El-Shazly, M.; El Menyiy, N. Ethnomedicinal use, phytochemistry, pharmacology, and food benefits of Thymus Capitatus. J. Ethnopharmacol. 2020, 259, 112925. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; El-Shazly, M.; Chamkhi, I. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Ajuga Iva (L.) schreb. J. Ethnopharmacol. 2020, 258, 112875. [Google Scholar] [CrossRef]
- Luo, X.; Hong, L.; Cheng, C.; Li, N.; Zhao, X.; Shi, F.; Liu, J.; Fan, J.; Zhou, J.; Bode, A.M. DNMT1 mediates metabolic reprogramming induced by epstein–barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, L.; Yan, A.; Chen, D.; Xie, R.; Liu, Y.; Liang, X.; Zhao, Y.; Wei, L.; Yu, J. Grifolic Acid induces GH3 adenoma cell death by inhibiting atp production through a GPR120-independent mechanism. BMC Pharmacol. Toxicol. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Yaqoob, A.; Li, W.M.; Liu, V.; Wang, C.; Mackedenski, S.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lee, C.H. Grifolin, neogrifolin and confluentin from the terricolous polypore albatrellus flettii suppress kras expression in human colon cancer cells. PLoS ONE 2020, 15, e0231948. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Hashimoto, T.; Ngoc Quang, D.; Nukada, M. Isolation, synthesis and biological activity of grifolic acid derivatives from the inedible mushroom Albatrellus Dispansus. Heterocycles 2005, 65, 2431. [Google Scholar] [CrossRef]
- Luo, D.-Q.; Shao, H.-J.; Zhu, H.-J.; Liu, J.-K. Activity in vitro and in vivo against plant pathogenic fungi of grifolin isolated from the basidiomycete albatrellus dispansus. Z. Für Nat. C 2005, 60, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Fournet, A.; Ferreira, M.E.; Rojas de Arias, A.; Fuentes, S.; Torres, S.; Inchausti, A.; Yaluff, G.; Nakayama, H.; Mahiou, V.; Hocquemiller, R.; et al. In vitro and in vivo leishmanicidal studies of peperomia galioides (piperaceae). Phytomedicine 1996, 3, 271–275. [Google Scholar] [CrossRef]
- Iwata, N.; Wang, N.; Yao, X.; Kitanaka, S. Structures and Histamine Release Inhibitory Effects of Prenylated Orcinol Derivatives from Rhododendron Dauricum 1. J. Nat. Prod. 2004, 67, 1106–1109. [Google Scholar] [CrossRef]
- Taura, F.; Iijima, M.; Lee, J.-B.; Hashimoto, T.; Asakawa, Y.; Kurosaki, F. Daurichromenic acid-producing oxidocyclase in the young leaves of Rhododendron Dauricum. Nat. Prod. Commun. 2014, 9, 1934578X1400900928. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Tankhaeva, L.M. Phenolic compounds from Rhododendron Dauricum from the baikal region. Chem. Nat. Compd. 2010, 46, 471–473. [Google Scholar] [CrossRef]
- Hernández-Ochoa, J.S.; Levin, L.N.; Hernández-Luna, C.E.; Contreras-Cordero, J.F.; Niño-Medina, G.; Chávez-Montes, A.; López-Sandin, I.; Gutiérrez-Soto, G. Antagonistic potential of Macrolepiota sp. against Alternaria Solani as causal agent of early blight disease in tomato plants. Gesunde Pflanz. 2020, 72, 69–76. [Google Scholar] [CrossRef]
- Phukan, H.; Bora, C.R.; Mitra, P.K. Phytochemical screening and GC-MS analysis of methanolic leaf extract of an endemic plant kayea assamica. IOSR J. Pharm. Biol. Sci. 2017, 15, 7–16. [Google Scholar]
- Hettwer, S.; Bänziger, S.; Suter, B.; Obermayer, B. Grifolin derivatives from Albatrellus Ovinus as TRPV1 receptor blockers for cosmetic applications. Int. J. Cosmet. Sci. 2017, 39, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nukata, M.; Hashimoto, T.; Yamamoto, I.; Iwasaki, N.; Tanaka, M.; Asakawa, Y. Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus Ovinus. Phytochem. 2002, 59, 731–737. [Google Scholar] [CrossRef]
- Liu, X.-T.; Winkler, A.L.; Schwan, W.R.; Volk, T.J.; Rott, M.A.; Monte, A. Antibacterial compounds from mushrooms i: A lanostane-type triterpene and prenylphenol derivatives from jahnoporus hirtus and albatrellus flettii and their activities against Bacillus Cereus and Enterococcus Faecalis. Planta Med. 2010, 76, 182–185. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Li, Z.-H.; Wang, G.-Q.; Wei, K.; Dong, Z.-J.; Feng, T.; Li, G.-T.; Li, Y.; Liu, J.-K. Nine New Farnesylphenols from the Basidiomycete Albatrellus Caeruleoporus. Nat. Prod. Bioprospect. 2014, 4, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-L.; Qin, C.; Wang, F.; Dong, Z.-J.; Liu, J.-K. A new meroterpenoid pigment from the basidiomycete albatrellus confluens. Chem. Biodivers. 2008, 5, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Liu, J.; Lu, Z.; Zhao, Y.; Liu, S.; Li, L.; Tan, M.; Weng, X.; Li, W.; Cao, Y. Grifolin, a potential antitumor natural product from the mushroom albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett. 2005, 579, 3437–3443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quang, D.N.; Hashimoto, T.; Arakawa, Y.; Kohchi, C.; Nishizawa, T.; Soma, G.-I.; Asakawa, Y. Grifolin derivatives from Albatrellus Caeruleoporus, new inhibitors of nitric oxide production in RAW 264.7 Cells. Bioorg. Med. Chem. 2006, 14, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Pang, R.-P.; Shen, J.-N.; Huang, G.; Wang, J.; Zhou, J.-G. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis 2007, 12, 1317–1326. [Google Scholar] [CrossRef]
- Song, J.; Manir, M.M.; Moon, S.-S. Cytotoxic grifolin derivatives isolated from the wild mushroom boletus pseudocalopus (basidiomycetes). Chem. Biodivers. 2009, 6, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Luo, X.; Li, L.; Shi, Y.; Tan, M.; Weng, X.; Li, W.; Liu, J.; Cao, Y. Grifolin, a potential antitumor natural product from the mushroom albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett. 2007, 258, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, L.; Deng, Q.; Yu, X.; Yang, L.; Luo, F.; Xiao, L.; Chen, X.; Ye, M.; Liu, J. Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via P53 in nasopharyngeal carcinoma cells. Eur. J. Cancer 2011, 47, 316–325. [Google Scholar] [CrossRef]
- Luo, X.; Yang, L.; Xiao, L.; Xia, X.; Dong, X.; Zhong, J.; Liu, Y.; Li, N.; Chen, L.; Li, H. Grifolin directly targets ERK1/2 to epigenetically suppress cancer cell metastasis. Oncotarget 2015, 6, 42704. [Google Scholar] [CrossRef] [Green Version]
- Che, X.; Yan, H.; Sun, H.; Dongol, S.; Wang, Y.; Lv, Q.; Jiang, J. Grifolin induces autophagic cell death by inhibiting the Akt/MTOR/S6K pathway in human ovarian cancer cells. Oncol. Rep. 2016, 36, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, N.; Zhong, J.; Tan, Z.; Liu, Y.; Dong, X.; Cheng, C.; Xu, Z.; Li, H.; Yang, L. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1/LSF-MMP2/CD44 axes. Oncotarget 2016, 7, 68708. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Zhong, G. Grifolin, a potent antitumor natural product inhibits the growth and invasion of gastric cancer cells in vitro. Int. J. Clin. Exp. Med. 2016, 9, 12659–12668. [Google Scholar]
- Wu, Z.; Li, Y. Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget 2017, 8, 21454. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Che, X.; Lv, Q.; Zhang, L.; Dongol, S.; Wang, Y.; Sun, H.; Jiang, J. Grifolin induces apoptosis and promotes cell cycle arrest in the A2780 human ovarian cancer cell line via inactivation of the ERK1/2 and Akt pathways. Oncol. Lett. 2017, 13, 4806–4812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and P38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [Green Version]
- Cagnol, S.; Chambard, J.-C. ERK and cell death: Mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J. 2010, 277, 2–21. [Google Scholar] [CrossRef]
- Machesky, L.M. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 2008, 582, 2102–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zi, D.; Zhou, Z.-W.; Yang, Y.-J.; Huang, L.; Zhou, Z.-L.; He, S.-M.; He, Z.-X.; Zhou, S.-F. Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/Akt/MTOR signaling pathway in human ovarian cancer cells. Int. J. Mol. Sci. 2015, 16, 27228–27251. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-F.; Yang, H.; Jiang, W.-Q.; Li, S.; Cai, Y.-C. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/MTOR signaling pathway in nasopharyngeal cancer cells. Int. J. Mol. Med. 2015, 36, 1556–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, M.; Matsui, H.; Tomita, T.; Sadakata, H.; Indo, H.P.; Majima, H.J.; Kaneko, T.; Hyodo, I. Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion. J. Clin. Biochem. Nutr. 2013, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-J.; Kuo, J.-C.; Yao, C.-C.; Chen, R.-H. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J. Cell Biol. 2002, 159, 169–179. [Google Scholar] [CrossRef]
- Jang, C.-W.; Chen, C.-H.; Chen, C.-C.; Chen, J.; Su, Y.-H.; Chen, R.-H. TGF-β induces apoptosis through smad-mediated expression of DAP-kinase. Nat. Cell Biol. 2002, 4, 51–58. [Google Scholar] [CrossRef]
- Dawson, C.W.; Port, R.J.; Young, L.S. The Role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the Pathogenesis of Nasopharyngeal Carcinoma (NPC). In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 22, pp. 144–153. [Google Scholar]
- Lo, K.-W.; Chung, G.T.-Y.; To, K.-F. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 22, pp. 79–86. [Google Scholar]
- Xiao, L.; Hu, Z.Y.; Dong, X.; Tan, Z.; Li, W.; Tang, M.; Chen, L.; Yang, L.; Tao, Y.; Jiang, Y. Targeting epstein–barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 2014, 33, 4568–4578. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R., Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol. Res. 2012, 66, 105–143. [Google Scholar] [CrossRef]
- McCormick, F. KRAS as a therapeutic target. Clin. Cancer Res. 2015, 21, 1797–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, S.E. Targeting RAS: The elusive prize. Clin. Cancer Res. 2015, 21, 1796. [Google Scholar] [CrossRef] [Green Version]
- Weiming, X.U.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The Role of Nitric Oxide in Cancer. Cell Res. 2002, 12, 311–320. [Google Scholar]
- Wink, D.A.; Vodovotz, Y.; Laval, J.; Laval, F.; Dewhirst, M.W.; Mitchell, J.B. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998, 19, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wink, D.A.; Ridnour, L.A.; Hussain, S.P.; Harris, C.C. The reemergence of nitric oxide and cancer. Nitric Oxide Biol. Chem. J. Nitric Oxide Soc. 2008, 19, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol. 2013, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, Y.; Nakanishi, K. Grifolin, an antibiotic from a basidiomycete. J. Biol. Chem. 1950, 184, 135–143. [Google Scholar] [CrossRef]
- Isobe, M.; Goto, T. Synthesis of grifolin, an antibiotic from a basidiomycete. Tetrahedron 1968, 24, 945–948. [Google Scholar] [CrossRef]
- Sugiyama, K.; Tanaka, A.; Kawagishi, H.; Ojima, F.; Sakamoto, H.; Ishiguro, Y. Hypocholesterolemic action of dietary grifolin on rats fed with a high-cholesterol diet. Biosci. Biotechnol. Biochem. 1994, 58, 211–212. [Google Scholar] [CrossRef]
Plants/Mushrooms | Origin of Grifolin (Extracts/Essential Oils/Extracts of Mushrooms) | References |
---|---|---|
Peperomia galioides | Extract of plant | [7] |
Peperomia galioides | Extract of plant | [19] |
Peperomia galioides | Extract of plant | [8] |
Rhododendron dauricum | Extract of plant | [20] |
Rhododendron dauricum | Extract of plant | [9] |
Rhododendron dauricum | Extract of plant | [21] |
Rhododendron dauricum | Extract of plant | [22] |
Solanum lycopersicum | Extract of plant | [23] |
Kayea assamica | Extract of plant | [24] |
Albatrellus ovinus | Extract of mushrooms | [25] |
Albatrellus ovinus | Extract of mushrooms | [26] |
Albatrellus flettii | Extract of mushrooms | [27] |
Albatrellus caeruleoporus | Extract of mushrooms | [28] |
Albatrellus confluens | Extract of mushrooms | [29] |
Albatrellus dispansus | Extract of mushrooms | [30] |
Cancer Type | Cell Lines | Experimental Approaches | Mechanism of Action | References |
---|---|---|---|---|
Marmoset B lymphoblastoid | B95-8 | Flow cytometry Fluorescent staining | Apoptosis IC50 = 24 μM Decreased Bcl-2 expression | [30] |
Burkitts lymphoma | Raji | Flow cytometry Fluorescent staining | Apoptosis IC50 = 27 μM Decreased Bcl-2 expression | |
Chronic myelogenous leukemia | K562 | Flow cytometry Fluorescent staining | Apoptosis IC50 = 18 μM Decreased Bcl-2 expression | |
Colon cancer | SW480 | Flow cytometry Fluorescent staining | Apoptosis IC50 = 27 μM Decreased Bcl-2 expression | |
Nasopharyngeal carcinoma | CNE1 | Flow cytometry Fluorescent staining | Apoptosis IC50 = 24 μM Released cytochrome c Decreased Bcl-2 expression | |
Breast cancer | MCF7 | Flow cytometry Fluorescent staining | Apoptosis IC50 = 30 μM Decreased Bcl-2 expression | |
Cervical cancer | HeLa | Flow cytometry Fluorescent staining | Apoptosis IC50 = 34 μM Decreased Bcl-2 expression | |
Murine macrophages | RAW 264.7 | LPS-induced production of nitric oxide (NO) | Inhibited NO production IC50 = 29.0 μM | [31] |
Nasopharyngeal carcinoma | CNE1 | Flow cytometry Western blotting | Induced cell-cycle arrest in G1 phase via the ERK1/2 pathway | [34] |
Osteosarcoma | MG63 and U2OS | Flow cytometry Western blotting | Apoptosis Inhibited PI3K/AKT signaling pathway | [32] |
Lung cancer | A549 | Colorimetric sulforhodamine B method | Cytotoxic effect 5.0 < IC50 < 10.5 μg/mL | [33] |
Human melanoma | SK-Mel-2 | Colorimetric sulforhodamine B method | Cytotoxic effect 8.0 < IC50 < 16.9 μg/mL | |
Mouse melanoma | B16F1 | Colorimetric sulforhodamine B method | Cytotoxic effect 3.5 < IC50 < 7.3 μg/mL | |
Nasopharyngeal carcinoma | CNE1 | Flow cytometry Western blotting | Upregulated DAPK1 via p53 | [35] |
Cervical cancer | HeLa | In vitro kinase assay Immunofluorescence analysis | Inhibited ERK1/2 kinase activities | [36] |
Breast cancer | MCF7 and MDA-MB-231 | In vitro kinase assay Immunofluorescence analysis | Inhibited ERK1/2 kinase activities | |
Nasopharyngeal carcinoma | 5-8F | In vitro kinase assay Immunofluorescence analysis | Downregulated the level of DNMT1 mRNA | |
Nasopharyngeal carcinoma | 5-8F | Metastatic mice (in vivo) | Reduced lung metastases to 18.2% | |
Ovarian cancer | SKOV3 and A2780 | Flow cytometry Western blotting | Apoptosis Inhibited the Akt/mTOR/S6K pathway | [37] |
Nasopharyngeal carcinoma | 5-8F | Cell adhesion assay Western blotting | Inhibited adhesion and migration of tumor cells | [38] |
Gastric carcinoma | MGC-803 | Cell adhesion assay Western blotting | Inhibited adhesion and migration of tumor cells | |
Gastric cancer | SGC-7901 and BGC-823 | Flow cytometry Western blotting Cell cycle assay | Apoptosis Inhibited the MAP kinase pathway | [39] |
Ovarian cancer | A2780 | Flow cytometry Western blotting | Apoptosis Decreased the expression of ERK1/2 and Akt | [41] |
Gastric cancer | SGC-7901 and BGC-823 | q-RT PCR assay Cell cycle arrest | Apoptosis Inhibited cell development and invasion | [40] |
Gastric cancer | SGC-7901 and BGC-823 | Xenografted nude BALB/c mice with gastric cancer cells | Increased the survival rate | |
Nasopharyngeal carcinoma | CNE1 and C666-1 | DNMT activity measurement | Inhibited the activity and expression of DNMT1 | [14] |
Pituitary adenoma | GH3 | Flow cytometry Western blotting Cellular ATP measurement | Apoptosis IC50 = 4.25 μmol/L Inhibited the ATP production | [15] |
Colon cancer | HT-29 | Cytotoxicity assay Flow cytometry | Anti-cell viability effect IC50 = 35.4 ± 2.4 μM | [16] |
Colon cancer | SW-480 | Cytotoxicity assay Flow cytometry | Anti-cell viability effect IC50 = 27.4 ± 2.2 μM | |
Cervical cancer | HeLa | Cytotoxicity assay Flow cytometry | Anti-cell viability effect IC50 = 30.7 ± 1.0 μM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouyahya, A.; El Allam, A.; Zeouk, I.; Taha, D.; Zengin, G.; Goh, B.H.; Catauro, M.; Montesano, D.; El Omari, N. Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules 2022, 27, 284. https://doi.org/10.3390/molecules27010284
Bouyahya A, El Allam A, Zeouk I, Taha D, Zengin G, Goh BH, Catauro M, Montesano D, El Omari N. Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules. 2022; 27(1):284. https://doi.org/10.3390/molecules27010284
Chicago/Turabian StyleBouyahya, Abdelhakim, Aicha El Allam, Ikrame Zeouk, Douae Taha, Gokhan Zengin, Bey Hing Goh, Michelina Catauro, Domenico Montesano, and Nasreddine El Omari. 2022. "Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms" Molecules 27, no. 1: 284. https://doi.org/10.3390/molecules27010284
APA StyleBouyahya, A., El Allam, A., Zeouk, I., Taha, D., Zengin, G., Goh, B. H., Catauro, M., Montesano, D., & El Omari, N. (2022). Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules, 27(1), 284. https://doi.org/10.3390/molecules27010284