Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biomass Profile
2.2. Extraction and Recovery of Bioactive Compounds
2.2.1. Effect of Temperature
2.2.2. Effect of Time
2.2.3. Effect of Solvent-to-Biomass Ratio
2.2.4. Synergistic Effect of Temperature, Time, and Solvent-to-Biomass Ratio
2.3. Optimization of the Extraction Process
2.3.1. Regression Model Equation Fitting
× 10−3 × T × ratio + 2.7491 × 10−4 × T2 + 6.8524 × 10−5 × T2 × t − 2.7579 × 10−5 × T2 × ratio
× t2 − 7.2698 × 10−3 × T × t2
2.3853 × 10−4 × t × ratio − 3.2808 × 10−4 × T2 − 8.4979 × 10−5 × ratio2 + 5.6995 × 10−5 × T2
× t
× 10−4 × T × ratio + 0.0211 × t2 − 5.0663 × 10−4 × T × t2
× T × ratio − 9.4095 × 10−3 × t × ratio + 2.4303 × 10−3 × T2 − 7.5348 × 10−4 × ratio2 +
1.8110 × 10−4 × T × t × ratio
2.3.2. Reliability Analysis
2.3.3. Synergistic Effect of the Independent Variables
2.3.4. Extraction Process Optimization and Validation Experiment
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Methods
3.3.1. Biomass Characterization
Moisture Content
Ash Content
Lipid Content
Carbohydrate Content
Protein Content
3.3.2. Conventional Extraction
Method Description
Experimental Design, Model Fitting, and Optimization
X12 + b8 × X22 + b9 × X32 + b10 × X1 × X2 × X3 + b11 × X12 × X2 + b12 × X12 × X3 + b13 × X1 ×
X22 + b14 × X1 × X32 + b15 × X22 × X3 + b16 × X2 × X32
3.3.3. Extract Analysis
Antioxidant Activity
Total Phenolic Content
Total Chlorophylls and Carotenoids
Selected Carotenoids of Astaxanthin, Lutein, and β-Carotene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A. Evaluation of the ANOVA Results and Optimization
Yield | Antioxidant Activity | ||||||
Source | F-Value | p-Value | Source | F-Value | p-Value | ||
Yield Model | 39.19 | <0.0001 | IC50 Model | 5.12 | 0.0124 | ||
T | 111.13 | <0.0001 | T | 13.08 | 0.0056 | ||
t | 19.29 | 0.0007 | T2*ratio | 7.32 | 0.0242 | ||
ratio | 18.91 | 0.0008 | Lack of Fit | 1.01 | 0.5418 | ||
ratio2 | 7.45 | 0.0172 | R2 | 0.8198 | Adeq Prec | 9.130 | |
Lack of Fit | 1.56 | 0.3937 | |||||
R2 | 0.9234 | Adeq Prec | 23.14 | ||||
Total Phenolic Content | Total Chlorophyll Content | ||||||
Source | F-value | p-value | Source | F-value | p-value | ||
TPC Model | 11.83 | 0.0003 | CHL Model | 13.84 | 0.0003 | ||
T*t | 13.46 | 0.0037 | T | 7.57 | 0.0224 | ||
T*t2 | 19.63 | 0.0010 | ratio | 70.19 | <0.0001 | ||
Lack of Fit | 2.04 | 0.3008 | t*ratio | 11.24 | 0.0085 | ||
R2 | 0.8658 | Adeq Prec | 12.49 | T2 | 10.84 | 0.0093 | |
ratio2 | 8.36 | 0.0178 | |||||
T2*t | 5.31 | 0.0467 | |||||
Lack of Fit | 0.57 | 0.7421 | |||||
R2 | 0.9248 | Adeq Prec | 11.47 | ||||
sel. Carotenoid Content | Total Carotenoid Content | ||||||
Source | F-value | p-value | Source | F-value | p-value | ||
sel.CAR Model | 29.39 | <0.0001 | CAR Model | 4.99 | 0.0168 | ||
ratio | 58.62 | <0.0001 | T | 5.32 | 0.0500 | ||
T*t | 65.86 | <0.0001 | ratio | 10.81 | 0.0111 | ||
T*ratio | 15.86 | 0.0026 | ratio2 | 7.05 | 0.0291 | ||
T*t2 | 17.73 | 0.0018 | T*t*ratio | 15.63 | 0.0042 | ||
Lack of Fit | 1.80 | 0.3392 | Lack of Fit | 1.09 | 0.5041 | ||
R2 | 0.9537 | Adeq Prec | 24.17 | R2 | 0.8488 | Adeq Prec | 7.64 |
Appendix B. Supplementary Data of Extract Analysis Protocols
Appendix B.1. Antioxidant Activity
Appendix B.2. Detection of Selected Carotenoids Using RP–HPLC
Appendix B.3. Total Chlorophylls and Carotenoids
References
- Chronakis, I.S.; Galatanu, A.N.; Nylander, T.; Lindman, B. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 181–192. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Raposo, M.F.; de Morais RMS, C.; de Morais, A.M.M.B. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, C.J.; de Andrade, L.M. An overview on the application of genus Chlorella in biotechnological processes. J. Adv. Res. Biotechnol. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- European Union. EU Novel Food Catalogue. Available online: https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/?event=home&seqfce=103&ascii=0# (accessed on 20 November 2021).
- Liu, J.; Chen, F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–35. [Google Scholar] [CrossRef]
- Humphrey, A.M. Chlorophyll as a color and functional ingredient. J. Food Sci. 2004, 69, C422–C425. [Google Scholar] [CrossRef]
- Kong, W.; Liu, N.; Zhang, J.; Yang, Q.; Hua, S.; Song, H.; Xia, C. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol. 2014, 51, 2006–2013. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, L.; Raymundo, A.; Batista, A.P.; Sousa, I.; Empis, J. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur. Food Res. Technol. 2006, 222, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Chew, B.P.; Park, J.S. Carotenoid action on the immune response. J. Nutr. 2004, 134, 257S–261S. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.H.; Koo, S.Y.; Lee, D.-U. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J. Agric. Food Chem. 2008, 56, 10521–10526. [Google Scholar] [CrossRef]
- Olson, J.A. Provitamin A function of carotenoids: The conversion of β-carotene into vitamin A. J. Nutr. 1989, 119, 105–108. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Romero, S.; Torrella, J.R.; Viscor, G.; Torres, J.L. Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutrients 2021, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity. Molecules 2017, 22, 1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanioti, S.; Liadakis, G.; Tzia, C. Solid-Liquid Extraction. In Food Engineering Handbook: Food Process Engineering; CRC Press: Boca Raton, FL, USA, 2014; pp. 253–286. [Google Scholar]
- Mendes, R.L.; Fernandes, H.L.; Coelho, J.P.; Reis, E.C.; Cabral, J.M.S.; Novais, J.M.; Palavra, A.F. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem. 1995, 53, 99–103. [Google Scholar] [CrossRef]
- Mendes, R.L.; Coelho, J.P.; Fernandes, H.L.; Marrucho, I.J.; Cabral, J.M.S.; Novais, J.M.; Palavra, A.F. Applications of supercritical CO2 extraction to microalgae and plants. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 1995, 62, 53–59. [Google Scholar] [CrossRef]
- Gouveia, L.; Veloso, V.; Reis, A.; Fernandes, H.; Novais, J.; Empis, J. Evolution of pigment composition in Chlorella vulgaris. Bioresour. Technol. 1996, 57, 157–163. [Google Scholar] [CrossRef]
- Palavra, A.M.F.; Coelho, J.P.; Barroso, J.G.; Rauter, A.P.; Fareleira, J.M.N.A.; Mainar, A.; Urieta, J.S.; Nobre, B.P.; Gouveia, L.; Mendes, R.L. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J. Supercrit. Fluids 2011, 60, 21–27. [Google Scholar] [CrossRef]
- Li, H.-B.; Jiang, Y.; Chen, F. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J. Agric. Food Chem. 2002, 50, 1070–1072. [Google Scholar] [CrossRef] [PubMed]
- Kitada, K.; Machmudah, S.; Sasaki, M.; Goto, M.; Nakashima, Y.; Kumamoto, S.; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2009, 84, 657–661. [Google Scholar] [CrossRef]
- Ruen-ngam, D.; Shotipruk, A.; Pavasant, P.; Machmudah, S.; Goto, M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem. Eng. Technol. 2012, 35, 255–260. [Google Scholar] [CrossRef]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.H.; Kang, S.W.; Kim, C.Y.; Um, B.H.; Na, Y.R.; Pan, C.-H. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 4756–4761. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, P.; D’Elia, L.; Liberti, D.; Olivieri, G.; Monti, D.M. Towards green extraction methods from microalgae learning from the classics. Appl. Microbiol. Biotechnol. 2020, 104, 9067–9077. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Häckl, K.; Kunz, W. Some aspects of green solvents. Comptes Rendus Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem. 2014, 16, 4546–4551. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tokuşoglu, Ö.; Üunal, M.K. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 2003, 68, 1144–1148. [Google Scholar] [CrossRef]
- Wan Mahmood, A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
- Zainan, N.H.; Srivatsa, S.C.; Li, F.; Bhattacharya, S. Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel 2018, 223, 12–19. [Google Scholar] [CrossRef]
- Rentizelas, A. Biomass Storage. In Biomass Supply Chains for Bioenergy and Biorefining; Elsevier: Amsterdam, The Netherlands, 2016; pp. 127–146. [Google Scholar]
- Radojković, M.; Zeković, Z.; Jokić, S.; Vidović, S.; Lepojević, Ž.; Milošević, S. Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technol. Biotechnol. 2012, 50, 167–176. [Google Scholar]
- Strati, I.F.; Oreopoulou, V. Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 2011, 46, 23–29. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldaña, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Babadi, F.E.; Boonnoun, P.; Nootong, K.; Powtongsook, S.; Goto, M.; Shotipruk, A. Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod. Process. 2020, 123, 296–303. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Hachemi, I.; Murzin, D.Y. Comparative study of the extraction methods for recovery of carotenoids from algae: Extraction kinetics and effect of different extraction parameters. J. Chem. Technol. Biotechnol. 2014, 89, 1607–1626. [Google Scholar] [CrossRef]
- Honda, M.; Maeda, H.; Fukaya, T.; Goto, M. Effects of Z-Isomerization on the Bioavailability and Functionality of Carotenoids: A Review. In Progress in Carotenoid Research; Intech Open: London, UK, 2018; pp. 139–159. [Google Scholar] [CrossRef] [Green Version]
- Levin, G.; Mokady, S. Antioxidant activity of 9-cis compared to all-trans β-carotene in vitro. Free. Radic. Biol. Med. 1994, 17, 77–82. [Google Scholar] [CrossRef]
- Mueller, L.; Boehm, V. Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 2011, 16, 1055–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopalan, V.; Tripathi, S.K.; Nahar, P.; Saradhi, P.P.; Das, R.H.; Gautam, H.K. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 2013, 23, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Zhang, L.; Zhang, H.; Sun, Q.; Liu, R.; Li, J.; Wu, L.; Tsao, R. Rapid and efficient conversion of all-E-astaxanthin to 9 Z-and 13 Z-isomers and assessment of their stability and antioxidant activities. J. Agric. Food Chem. 2017, 65, 818–826. [Google Scholar] [CrossRef]
- Yang, C.; Fischer, M.; Kirby, C.; Liu, R.; Zhu, H.; Zhang, H.; Chen, Y.; Sun, Y.; Zhang, L.; Tsao, R. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem. 2018, 249, 66–76. [Google Scholar] [CrossRef]
- Hosikian, A.; Lim, S.; Halim, R.; Danquah, M.K. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010, 2010, 391632. [Google Scholar] [CrossRef] [Green Version]
- Casazza, A.A.; Aliakbarian, B.; Perego, P. Recovery of phenolic compounds from grape seeds: Effect of extraction time and solid–liquid ratio. Nat. Prod. Res. 2011, 25, 1751–1761. [Google Scholar] [CrossRef]
- Gui-you, M.; Jiao-qi, W.; Qing-yuan, R.; Xin-sheng, H.; Yi, H. Optimizing the extraction technology of antioxidant substances from Daldinia concentrica by orthogonal experiments. Songklanakarin J. Sci. Technol. 2020, 42, 1016–1020. [Google Scholar]
- Zhang, H.; Birch, J.; Xie, C.; Yang, H.; Dias, G.; Kong, L.; Bekhit, A.E.D. Optimization of extraction parameters of antioxidant activity of extracts from New Zealand and Chinese Asparagus officinalis L. root cultivars. Ind. Crops Prod. 2018, 119, 191–200. [Google Scholar] [CrossRef]
- FiorMarkets. Global Carotenoids Market Is Expected to Reach USD 3.59 Billion by 2025: Fior Markets. 2019. Available online: https://www.globenewswire.com/news-release/2019/10/15/1929461/0/en/Global-Carotenoids-Market-is-expected-to-reach-USD-3–59-billion-by-2025-Fior-Markets.html (accessed on 20 November 2021).
- Aronhime, S.; Calcagno, C.; Jajamovich, G.H.; Dyvorne, H.A.; Robson, P.; Dieterich, D.; Isabel, F.M.; Martel-Laferriere, V.; Chatterji, M.; Rusinek, H.; et al. DCE-MRI of the liver: Effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J. Magn. Reson. Imaging 2014, 40, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couto, M.F.; Peternelli, L.A.; Barbosa, M.H.P. Classification of the coefficients of variation for sugarcane crops. Ciência Rural 2013, 43, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Araujo, G.S.; Matos, L.J.B.L.; Fernandes, J.O.; Cartaxo, S.J.M.; Gonçalves, L.R.B.; Fernandes, F.A.N.; Farias, W.R.L. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason. Sonochem. 2013, 20, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Pratoomyot, J.; Bendiksen, E.Å.; Bell, J.G.; Tocher, D.R. Comparison of effects of vegetable oils blended with southern hemisphere fish oil and decontaminated northern hemisphere fish oil on growth performance, composition and gene expression in Atlantic salmon (Salmo salar L.). Aquaculture 2008, 280, 170–178. [Google Scholar] [CrossRef]
- Moheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard Methods for Measuring Growth of Algae and Their Composition. In Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 265–284. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue methode zur bestimmung des stickstoffs in organischen körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Büchi. Nitrogen Determination in Soil. Available online: https://www.buchi.com/en/knowledge/applications/nitrogen-determination-soil (accessed on 20 November 2021).
- Lourenço, S.O.; Barbarino, E.; Lavín, P.L.; Lanfer Marquez, U.M.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004, 39, 17–32. [Google Scholar] [CrossRef]
- Laina, K.M.; Eleni, P.N.; Tsitseli, K.G.; Krokida, M.K. Process Design for the Extraction of Bioactive Compounds from Several Mediterranean Medicinal Plants. Chem. Eng. Trans. 2021, 86, 1327–1332. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. Phytoplankton Pigments in Oceanography: Monographs on Oceanographic Methodology; United Nations Educational, Scientific and Cultural Organizations: Paris, France, 1997. [Google Scholar]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 2947–2960. [Google Scholar] [CrossRef]
Primary Composition | % 1 |
---|---|
Lipid | 22.17 ± 0.46 |
Carbohydrate | 33.84 ± 1.33 |
Protein | 44.48 ± 0.77 |
Ash | 5.63 ± 0.06 |
Moisture | 2.32 ± 0.12 |
Run | T (°C) | t (h) | Ratio (mLsolv/gbiom) | Yield (% w/w) | IC50 (mgextr/mgDPPH) | TPC (mgGA/gextr) | CHL (mg/gextr) | sel. CAR (mg/gextr) | CAR (mg/gextr) |
---|---|---|---|---|---|---|---|---|---|
1 | 30 | 15 | 55 | 13.75 | 57.77 | 11.14 | 44.34 | 2.93 | 8.92 |
2 | 30 | 6 | 20 | 11.06 | 50.31 | 17.15 | 50.43 | 3.63 | 7.35 |
3 | 30 | 6 | 90 | 13.49 | 34.73 | 19.89 | 27.86 | 2.28 | 9.11 |
4 | 30 | 24 | 20 | 12.82 | 65.29 | 26.28 | 47.82 | 4.87 | 9.90 |
5 | 30 | 24 | 90 | 14.91 | 61.11 | 27.35 | 39.00 | 3.36 | 6.65 |
6 | 45 | 6 | 55 | 15.02 | 60.31 | 11.49 | 41.23 | 2.54 | 8.67 |
7 | 45 | 15 | 20 | 14.82 | 54.72 | 12.80 | 40.76 | 3.42 | 8.63 |
8 | 45 | 15 | 55 | 16.55 | 55.85 | 17.79 | 40.17 | 3.04 | 8.61 |
9 | 45 | 15 | 55 | 17.02 | 70.78 | 15.22 | 37.06 | 3.18 | 7.84 |
10 | 45 | 15 | 55 | 17.84 | 60.88 | 14.50 | 36.84 | 3.06 | 8.07 |
11 | 45 | 15 | 55 | 17.77 | 65.47 | 13.29 | 33.45 | 3.36 | 7.18 |
12 | 45 | 15 | 90 | 16.40 | 71.29 | 9.72 | 29.69 | 2.59 | 6.40 |
13 | 45 | 24 | 55 | 16.70 | 58.86 | 12.37 | 34.53 | 2.78 | 7.80 |
14 | 60 | 6 | 20 | 16.24 | 66.25 | 12.02 | 43.74 | 3.23 | 8.61 |
15 | 60 | 6 | 90 | 17.40 | 64.03 | 12.11 | 29.67 | 2.76 | 6.36 |
16 | 60 | 24 | 20 | 18.08 | 79.41 | 7.46 | 38.01 | 2.18 | 6.93 |
17 | 60 | 24 | 90 | 21.01 | 64.42 | 7.07 | 31.85 | 1.88 | 6.52 |
18 | 60 | 15 | 55 | 18.04 | 59.28 | 15.80 | 42.59 | 3.14 | 9.05 |
T (°C) | t (h) | Ratio (mLsolv/gbiom) |
---|---|---|
30 | 24 | 37 |
Response | Predicted | Actual |
Yield (% w/w) | 14.36 | 15.39 |
IC50 (mgextr/mgDPPH) | 68.40 | 52.58 |
TPC (mgGA/gextr) | 25.86 | 18.23 |
CHL (mg/gextr) | 48.83 | 53.47 |
sel. CAR (mg/gextr) | 4.42 | 4.12 |
CAR (mg/gextr) | 9.75 | 9.92 |
RSM/Face-Centered Central Composite Design (Alpha = 1) | |||||
---|---|---|---|---|---|
Variable | Factor | Units | −1 Level | 0 Level | +1 Level |
T | X1 | °C | 30 | 45 | 60 |
t | X2 | h | 6 | 15 | 24 |
Ratio | X3 | mLsolv/gbiom | 20 | 55 | 90 |
RSM/Face-Centered Central Composite Design (Alpha = 1) | |||||||
---|---|---|---|---|---|---|---|
Coded Factors | Real Variables | ||||||
Run | Type | X1 | X2 | X3 | T (°C) | T (h) | Ratio (mLsolv/gbiom) |
1 | Axial | −1 | 0 | 0 | 30 | 15 | 55 |
2 | Factorial | −1 | −1 | −1 | 30 | 6 | 20 |
3 | Factorial | −1 | −1 | 1 | 30 | 6 | 90 |
4 | Factorial | −1 | 1 | −1 | 30 | 24 | 20 |
5 | Factorial | −1 | 1 | 1 | 30 | 24 | 90 |
6 | Axial | 0 | −1 | 0 | 45 | 6 | 55 |
7 | Axial | 0 | 0 | −1 | 45 | 15 | 20 |
8 | Central | 0 | 0 | 0 | 45 | 15 | 55 |
9 | Central | 0 | 0 | 0 | 45 | 15 | 55 |
10 | Central | 0 | 0 | 0 | 45 | 15 | 55 |
11 | Central | 0 | 0 | 0 | 45 | 15 | 55 |
12 | Axial | 0 | 0 | 1 | 45 | 15 | 90 |
13 | Axial | 0 | 1 | 0 | 45 | 24 | 55 |
14 | Factorial | 1 | −1 | −1 | 60 | 6 | 20 |
15 | Factorial | 1 | −1 | 1 | 60 | 6 | 90 |
16 | Factorial | 1 | 1 | −1 | 60 | 24 | 20 |
17 | Factorial | 1 | 1 | 1 | 60 | 24 | 90 |
18 | Axial | 1 | 0 | 0 | 60 | 15 | 55 |
Time (Min) | Methanol (% v/v) | MTBE (% v/v) | aq. Phosphoric Acid1%v/v (% v/v) |
---|---|---|---|
0 | 81 | 15 | 4 |
15 | 66 | 30 | 4 |
23 | 16 | 80 | 4 |
27 | 16 | 80 | 4 |
27.1 | 81 | 15 | 4 |
35 | 81 | 15 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiopoulou, I.; Tzima, S.; Pappa, G.D.; Louli, V.; Voutsas, E.; Magoulas, K. Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules 2022, 27, 29. https://doi.org/10.3390/molecules27010029
Georgiopoulou I, Tzima S, Pappa GD, Louli V, Voutsas E, Magoulas K. Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules. 2022; 27(1):29. https://doi.org/10.3390/molecules27010029
Chicago/Turabian StyleGeorgiopoulou, Ioulia, Soultana Tzima, Georgia D. Pappa, Vasiliki Louli, Epaminondas Voutsas, and Kostis Magoulas. 2022. "Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction" Molecules 27, no. 1: 29. https://doi.org/10.3390/molecules27010029
APA StyleGeorgiopoulou, I., Tzima, S., Pappa, G. D., Louli, V., Voutsas, E., & Magoulas, K. (2022). Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules, 27(1), 29. https://doi.org/10.3390/molecules27010029