New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH and Soluble Solids
2.2. Total Phenolic Content (tpc) in the Smoothies
2.3. Anthocyanins Content
2.4. Carotenoids
2.5. Ascorbic Acid
2.6. Antioxidant Activity
2.7. Color Attributes of Smoothies
2.8. Sensory Analysis
3. Materials and Methods
3.1. Materials
3.2. Smoothies Preparation
3.3. Determination of pH and Soluble Solids
3.4. Total Phenolic Compounds (TPC) Extraction and Analysis
3.5. Anthocyanins Analysis
3.6. Extraction and Analysis of Carotenoids
3.7. Ascorbic Acid Extraction and Analysis
3.8. Antioxidant Activity
3.9. Instrumental Color Measurement
3.10. Sensory Evaluation
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cagno, R.D.; Minervini, G.; Rizzello, C.G.; Angelis, M.D.; Gobbetti, M. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiol. 2011, 28, 1062–1071. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods based diet as a novel dietary approach for management of type 2 diabetes and its complications. Review. J. Diabetes 2014, 5, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Venkataramana, R.K.; Sampangi-Ramaiah, M.H.; Ajitha, R.; Khadke, G.N.; Chellam, V. Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Gene 2015, 4, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/ (accessed on 26 June 2021).
- Wang, S.; Lin, T.; Man, G.; Li, H.; Zhao, L.; Wu, J.; Liao, X. Effects of anti-browning combinations of ascorbic acid, citric acid, nitrogen and carbon dioxide on the quality of banana smoothies. Food Bioprocess Technol. 2014, 7, 161–173. [Google Scholar] [CrossRef]
- Falcomer, A.L.; Riquette, R.F.R.; de Lima, B.R.; Ginani, V.C.; Zandonadi, R.P. Health benefits of green banana consumption: A systematic review. Nutrients 2019, 11, 1222. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Kırca, A.; Özkan, M.; Cemeroğlu, B. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem. 2007, 101, 212–218. [Google Scholar] [CrossRef]
- Khandare, V.; Walia, S.; Singh, M.; Kaur, C. Black carrot (Daucus carota ssp. Sativus) juice: Processing effects on antioxidant composition and color. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2011, 89, 482–486. [Google Scholar] [CrossRef]
- Özen, G.; Akbulut, M.; Artik, N. Stability of black carrot anthocyanins in the Turkish delight (Lokum) during storage. J. Food Process Eng. 2011, 34, 1282–1297. [Google Scholar] [CrossRef]
- Elham, G.; Reza, H.; Jabbar, K.; Parisa, S.; Rashid, J. Isolation and structure characterisation of anthocyanin pigments in black carrot (Daucus carota L.). Pak. J. Biol. Sci. 2006, 9, 2905–2908. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, H.; Shehzad, M.; Rabail, R.; Kowalczewski, P.Ł.; Kidoń, M.; Jeżowski, P.; Ranjha, M.M.A.N.; Rakha, A.; Din, A.; Aadil, R.M. Delving into the nutraceutical benefits of purple carrot against metabolic syndrome and cancer: A review. Appl. Sci. 2022, 12, 3170. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, D.; Valduga, E.; Villela, J.H.C.; Mistura, C.C.; Vizzotto, M.; Valgas, R.A.; Barbieri, R.L. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in southern Brazil. Food Sci. Technol. Int. 2016, 37, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Rao, R.T.V. Nutritional quality characteristics of pumpkin fruit as revealed by its biochemical analysis. Int. Food Res. J. 2013, 20, 2309–2316. [Google Scholar]
- Dhiman, A.; Sharma, K.; Attri, S. Functional constituents and processing of pumpkin: A review. J. Food Sci. Technol. 2009, 46, 411–417. [Google Scholar]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.B.K.S.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiano, A.; Mastromatteo, M.; del Nobile, M.A. Effects of cultivar and process variables on dynamic-mechanical and sensorial behavior of value-added grape-based smoothies. Molecules 2012, 17, 11421–11434. [Google Scholar] [CrossRef] [Green Version]
- Picouet, P.; Hurtado, A.; Jofré, A.; Bañon, S.; Ros, J.-M.; Guàrdia, M.D. Effects of thermal and high-pressure treatments on the microbiological, nutritional and sensory quality of a multi-fruit smoothie. Food Bioprocess Technol. 2016, 9, 1219–1232. [Google Scholar] [CrossRef]
- Saini, D.; Sharma, S. Utilization of sand pear and orange peel to develop value added smoothie. Pharma Innov. J. 2020, 9, 200–202. [Google Scholar]
- Wojcicki, J.M.; Heyman, M.B. Reducing childhood obesity by eliminating 100% fruit juice. Am. J. Public Health 2012, 102, 1630–1633. [Google Scholar] [CrossRef]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Ribeiro, L.; de Carvalho Barbosa, I.; de Grandi Castro Freitas de SÁ, D.; da Silva, J.P.L.; da Matta, V.M.; Freitas, S.P. Stability evaluation of juçara, banana and strawberry pasteurized smoothie during storage. Food Sci. Technol. 2020, 40, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Uzodinma, E.; Mbaeyi-Nwaoha, I.E.; Onwurafor, E. Influence of pasteurization on the quality of pineapple, watermelon and banana pulps-based smoothie flavoured with coconut milk. Am. J. Food Sci. Technol. 2020, 8, 99–105. [Google Scholar] [CrossRef]
- Gajewski, M.; Szymczak, P.; Elkner, K.; Dąbrowska, A.; Kret, A.; Danilcenko, H. Some aspects of nutritive and biological value of carrot cultivars with orange, yellow and purple-coloured roots. J. Fruit Ornam. Plant Res. 2007, 67, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Anju, K.D.; Babu, N.G.; Surekha, A.; Preethi, R. Preparation of pumpkin pulp and effect of different preservation methods on chemical and sensory properties during storage. J. Pharmacogn. Phytochem. 2018, 7, 943–949. [Google Scholar]
- Bugaud, C.; Etienne, A.; Cazevielle, P.; Mbéguié-A-Mbéguié, D.; Lobit, P. Modelling pH and titratable acidity in banana fruit based on acid and mineral composition. In Seventh International Postharvest Symposium; Abdullah, H., Latifah, M.N., Eds.; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2012; pp. 1223–1228. [Google Scholar]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Namieśnik, J.; Bartoszek, A. Juices from non-typical edible fruits as health-promoting acidity regulators for food industry. LWT-Food Sci. Technol. 2015, 64, 845–852. [Google Scholar] [CrossRef]
- De Oliveira Ribeiro, L.; Carvalho dos Santos, J.G.; dos Santos Gomes, F.; Cabral, L.M.C.; de Grandi Castro Freitas SÁ, D.; da Matta, V.M.; Freitas, S.P. Sensory evaluation and antioxidant capacity as quality parameters in the development of a banana, strawberry and juçara smoothie. Food Sci. Technol. 2018, 38, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Witrowa-Rajchert, D.; Bawoł, A.; Czapski, J.; Kidoń, M. Studies on drying of purple carrot roots. Dry. Technol. 2009, 27, 1325–1331. [Google Scholar] [CrossRef]
- Quitão-Teixeira, L.J.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Mota-Ramos, A.; Martín-Belloso, O. Comparative study on antioxidant properties of carrot juice stabilised by high-intensity pulsed electric fields or heat treatments. J. Sci. Food Agric. 2009, 89, 2636–2642. [Google Scholar] [CrossRef]
- Zinash, A.; Workneh, T.S.; Woldetsadik, K. Effect of accessions on the chemical quality of fresh pumpkin. Afr. J. Biotechnol. 2013, 12, 7092–7098. [Google Scholar]
- Stan, A.; Popa, M.E. Research on the correlation between physico-chemical, sensory analysis of smoothie type products and consumer preferences. Sci. Bull. Ser. F Biotechnol. 2013, 17, 193–197. [Google Scholar]
- Bashmil, Y.M.; Ali, A.; Bk, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and characterization of phenolic compounds from australian grown bananas and their antioxidant capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Kamińska, I.; Kramer, M.; Maksylewicz-Kaul, A.; Kammerer, D.; Carle, R.; Baranski, R. The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum. Nutr. 2013, 68, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef]
- Formica, C.; Martínez-Hernández, G.; Aguayo, E.; Gómez, P.; Artés, F.; Artés-Hernández, F. A functional smoothie from carrots with induced enhanced phenolic content. Food Bioprocess Technol. 2017, 10, 491–502. [Google Scholar] [CrossRef]
- Ribeiro, L.O.; Pinheiro, A.C.; Brígida, A.I.S.; Genisheva, Z.A.; Vicente, A.; Teixeira, J.A.; de Matta, V.M.; Freitas, S.P. In vitro gastrointestinal evaluation of a juçara-based smoothie: Effect of processing on phenolic compounds bioaccessibility. J. Food Sci. Technol. 2019, 56, 5017–5026. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Shipp, J.; Abdel-Aal, E.-S.M. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- González-Tejedor, G.; Martínez-Hernández, G.; Garre Perez, A.; Egea, J.A.; Fernández, P.; Artés-Hernández, F. Quality changes and shelf-life prediction of a fresh fruit and vegetable purple smoothie. Food Bioprocess Technol. 2017, 10, 1892–1904. [Google Scholar] [CrossRef]
- Keenan, D.F.; Rößle, C.; Gormley, R.; Butler, F.; Brunton, N.P. Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT-Food Sci. Technol. 2012, 45, 50–57. [Google Scholar] [CrossRef]
- Algarra, M.; Fernandes, A.; Mateus, N.; de Freitas, V.; da Silva, J.C.G.E.; Casado, J. Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens alef.) from Cuevas Bajas, Spain. J. Food Compos. Anal. 2014, 33, 71–76. [Google Scholar] [CrossRef]
- Türkyılmaz, M.; Yemiş, O.; Özkan, M. Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chem. 2012, 134, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-J.; Hsieh, Y.-Y.; Huang, T.-C. Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using 17O NMR. J. Agric. Food Chem. 2004, 52, 3097–3099. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah, E.; Khayamy, M.; Heidari, R.; Jamee, R. Effect of sugar treatment on stability of anthocyanin pigments in berries. J. Biol. Sci. 2007, 7, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Thermal degradation of acylated and nonacylated anthocyanins. J. Food Sci. 2006, 71, C504–C512. [Google Scholar] [CrossRef]
- Wall, M.M. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compos. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- Bergantin, C.; Maietti, A.; Tedeschi, P.; Font, G.; Manyes, L.; Marchetti, N. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules 2018, 23, 2791. [Google Scholar] [CrossRef] [Green Version]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A. Content of bioactive compounds and antioxidant capacity of pumpkin puree enriched with Japanese quince, cornelian cherry, strawberry and apples. Acta Sci. Pol. Technol. Aliment. 2011, 10, 51–60. [Google Scholar]
- Balaswamy, K.; Prabhakara Rao, P.G.; Nagender, A.; Narsing Rao, G.; Sathiya Mala, K.; Jyothirmayi, T.; Math, R.G.; Satyanarayana, A. Development of smoothies from selected fruit pulps/juices. Int. Food Res. J. 2013, 20, 1181–1185. [Google Scholar]
- Favell, D.J. A comparison of the vitamin C content of fresh and frozen vegetables. Food Chem. 1998, 62, 59–64. [Google Scholar] [CrossRef]
- Silva, A.C.B.; dos Santos Schuquel, L.C.; da Silva, C.O.; Pascoal, G.B. Nutritional and physicochemical quality in fresh and fresh-cut carrot (Daucus carota L.). Demetria Food Nutr. Health 2016, 11, 355–367. [Google Scholar] [CrossRef]
- Silveira, A.C.; Aguayo, E.; Artés, F. Shelf-life and quality attributes in fresh-cut galia melon combined with fruit juices. LWT-Food Sci. Technol. 2013, 50, 343–348. [Google Scholar] [CrossRef]
- Yadav, V.T. Effect of heat processing on beta-carotene and ascorbic acid content of carrot fruit juice blended nectar. Biascan 2015, 10, 699–703. [Google Scholar]
- Patras, A.; Brunton, N.P.; Pieve, S.D.; Butler, F.; Downey, G. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 16–22. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Rio, D.D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Agbenorhevi, J.K.; Marshall, L.J. Investigation into the total phenols and antioxidant activity during storage of fruit smoothies. J. Food Sci. Eng. 2012, 2, 72–79. [Google Scholar]
- Sharmin, H.; Shaheen, N.; Mohiduzzaman, M.; Banu, C. Antioxidant capacity and total phenol content of commonly consumed selected vegetables of Bangladesh. Malays. J. Nutr. 2011, 17, 377–383. [Google Scholar]
- Jiratanan, T.; Liu, R.H. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 2659–2670. [Google Scholar] [CrossRef]
- Keenan, D.F.; Brunton, N.P.; Gormley, T.R.; Butler, F.; Tiwari, B.K.; Patras, A. Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innov. Food Sci. Emerg. Technol. 2010, 11, 551–556. [Google Scholar] [CrossRef]
- Buniowska, M.; Arrigoni, E.; Znamirowska, A.; Blesa, J.; Frígola, A.; Esteve, M.J. Liberation and micellarization of carotenoids from different smoothies after thermal and ultrasound treatments. Foods 2019, 8, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzodinma, E.; Ochulor, C. Effect of pasteurization on chemical and sensory properties of fruit pulps-based smoothie with added coconut milk. In Advances in Food Science; Phan Phuoc, H., Ed.; Vide Leaf: Hyderabad, India, 2020; pp. 1–18. ISBN 978-93-90014-25-5. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Oszmiański, J.; Sapis, J.C. Anthocyanins in fruits of Aronia melanocarpa (Chokeberry). J. Food Sci. 1988, 53, 1241–1242. [Google Scholar] [CrossRef]
- Kurilich, A.C.; Tsau, G.J.; Brown, A.; Howard, L.; Klein, B.P.; Jeffery, E.H.; Kushad, M.; Wallig, M.A.; Juvik, J.A. Carotene, tocopherol, and ascorbate contents in subspecies of brassica oleracea. J. Agric. Food Chem. 1999, 47, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved \ABTS\ radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample | pH | Soluble Solids [%] |
---|---|---|
PCH | 3.91 ± 0.01 | 10.5 ± 0.2 |
PCL | 4.37 ± 0.01 | 7.9 ± 0.1 |
BCL | 4.45 ± 0.01 | 16.7 ± 0.2 |
BCW | 4.35 ± 0.01 | 12.7 ± 0.2 |
BPCW | 4.45 ± 0.01 | 12.2 ± 0.1 |
Sample | Total Phenolic Content (TPC) (mg/100 g) | Sum of Carotenoids (µg/100 g) | Vitamin C (mg/100 g) | Antioxidant Activity (µM TE/g) |
---|---|---|---|---|
PCH | 44.9 ± 2.9 ab | 62 ± 8 b | 0.34 ± 0.02 b | 4.3 ± 0.2 a |
PCL | 39.2 ± 0.6 a | 72 ± 16 b | 0.41 ± 0.01 c | 4.3 ± 0.1 a |
BCL | 55.8 ± 1.1 c | 11 ± 1 a | 0.27 ± 0.01 a | 6.2 ± 0.2 c |
BCW | 47.4 ± 0.6 b | 45 ± 12 b | 0.31 ± 0.01 b | 5.2 ± 0.1 b |
BPCW | 46.6 ± 2.1 b | 108 ± 10 c | 0.25 ± 0.01 a | 4.9 ± 0.1 b |
Sample | Compound 1 | Compound 2 | Compound 3 | Compound 4 | Sum of Anthocyanins |
---|---|---|---|---|---|
PCH | 0.63 ± 0.01 | 0.87 ± 0.02 | 1.01 ± 0.02 | 7.69 ± 0.17 | 10.2 ± 0.5 bc |
PCL | 0.69 ± 0.01 | 0.93 ± 0.01 | 1.02 ± 0.01 | 7.75 ± 0.01 | 10.4 ± 0.3 cd |
BCL | 0.64 ± 0.01 | 0.74 ± 0.01 | 0.70 ± 0.01 | 9.02 ± 0.02 | 11.1 ± 0.3 d |
BCW | 0.47 ± 0.01 | 0.61 ± 0.01 | 0.45 ± 0.01 | 5.57 ± 0.08 | 7.1 ± 0.3 a |
BPCW | 0.44 ± 0.01 | 0.54 ± 0.02 | 0.71 ± 0.01 | 6.31 ± 0.17 | 8.0 ± 0.5 ab |
Sample | L* | a* | b* |
---|---|---|---|
PCH | 14.7 ± 0.1 b | 25.0 ± 0.2 c | 11.7 ± 0.2 c |
PCL | 12.9 ± 0.1 a | 20.7 ± 0.2 a | 7.7 ± 0.2 b |
BCL | 22.9 ± 0.2 c | 24.5 ± 0.1 c | 2.9 ± 0.3 a |
BCW | 26.5 ± 0.1 e | 22.3 ± 0.1 b | 3.4 ± 0.2 a |
BPCW | 24.5 ± 0.1 d | 22.4 ± 0.1 b | 7.3 ± 0.2 b |
Ingredient | PCH | PCL | BCL | BCW | BPCW |
---|---|---|---|---|---|
pumpkin | 50 | 50 | 0 | 0 | 30 |
banana | 0 | 0 | 40 | 44 | 40 |
purple carrot | 10 | 10 | 10 | 10 | 10 |
lemon juice | 4 | 2 | 2 | 3 | 3 |
sugar | 6 | 4 | 4 | 0 | 0 |
water | 30 | 34 | 44 | 43 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kidoń, M.; Uwineza, P.A. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules 2022, 27, 3049. https://doi.org/10.3390/molecules27103049
Kidoń M, Uwineza PA. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules. 2022; 27(10):3049. https://doi.org/10.3390/molecules27103049
Chicago/Turabian StyleKidoń, Marcin, and Pascaline Aimee Uwineza. 2022. "New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds" Molecules 27, no. 10: 3049. https://doi.org/10.3390/molecules27103049
APA StyleKidoń, M., & Uwineza, P. A. (2022). New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules, 27(10), 3049. https://doi.org/10.3390/molecules27103049