Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking-Based Virtual Screening
2.2. ADMET Properties
2.3. PASS Analysis
2.4. Interaction Analysis
2.5. MD Simulation
2.5.1. Structural Dynamics and Compactness
2.5.2. Dynamics of Hydrogen Bonds
2.6. PCA and FELs Analysis
3. Materials and Methods
3.1. Computer Environment and Web Resources
3.2. Receptor and Library Preparation
3.3. Molecular Docking Based Virtual Screening
3.4. ADMET Prediction
3.5. PASS Analysis
3.6. Interaction Analysis
3.7. MD Simulations
3.8. Principal Component Analysis and Essential Dynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.W.; Bonnah, R.A.; Higashi, D.L.; Atkinson, J.P.; Milgram, S.L.; So, M. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. J. Cell Biol. 2002, 156, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, M.K.; Jin, Y.; Fu, S.B.; Rosales, J.L.; Lee, K.Y. Clues for c-Yes involvement in the cell cycle and cytokinesis. Cell Cycle 2011, 10, 1502–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, K.; Sugawara, I.; Sukegawa, J.; Akatsuka, T.; Yamamoto, T.; Morita, M.; Mori, S.; Toyoshima, K. Distribution of c-yes-1 gene product in various cells and tissues. Br. J. Cancer 1991, 63, 508–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, J.; Zhao, Y.H.; Murphy, D.; Sudol, M. Differential expression of p62c-yes in normal, hyperplastic and neoplastic human epidermis. Oncogene 1991, 6, 933–940. [Google Scholar]
- Sun, Y.; Tian, Y.; He, J.; Tian, Y.; Zhang, G.; Zhao, R.; Zhu, W.J.; Gao, P. Linc01133 contributes to gastric cancer growth by enhancing YES1-dependent YAP1 nuclear translocation via sponging miR-145-5p. Cell Death. Dis. 2022, 13, 51. [Google Scholar] [CrossRef]
- Garmendia, I.; Pajares, M.J.; Hermida-Prado, F.; Ajona, D.; Bértolo, C.; Sainz, C.; Lavín, A.; Remírez, A.B.; Valencia, K.; Moreno, H.; et al. YES1 Drives Lung Cancer Growth and Pr.rogression and Predicts Sensitivity to Dasatinib. Am. J. Res. Crit. Care Med. 2019, 200, 888–899. [Google Scholar] [CrossRef]
- Lee, S.; Ayrapetov, M.K.; Kemble, D.J.; Parang, K.; Sun, G. Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J. Biol. Chem. 2006, 281, 8183–8189. [Google Scholar] [CrossRef] [Green Version]
- Martín-García, J.M.; Luque, I.; Mateo, P.L.; Ruiz-Sanz, J.; Cámara-Artigas, A. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: Loop flexibility and amyloid aggregation. FEBS Lett. 2007, 581, 1701–1706. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, T.; Siddiqui, S.; Shamsi, A.; Alajmi, M.F.; Hussain, A.; Islam, A.; Ahmad, F.; Hassan, M.I. Virtual Screening Approach to Identify High-Affinity Inhibitors of Serum and Glucocorticoid-Regulated Kinase 1 among Bioactive Natural Products: Combined Molecular Docking and Simulation Studies. Molecules 2020, 25, 823. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Baell, J.B. Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod. 2016, 79, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci. Rep. 2018, 8, 4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, T.; Mathur, Y.; Hassan, M.I. InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief. Bioinform. 2021, 22, bbaa279. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, S.; Choi, E.H.; Chaudhary, S.; Kim, M.H. Computational modeling on aquaporin-3 as skin cancer target: A virtual screening study. Front. Chem. 2020, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Naz, F.; Khan, F.I.; Mohammad, T.; Khan, P.; Manzoor, S.; Hasan, G.M.; Lobb, K.A.; Luqman, S.; Islam, A.; Ahmad, F. Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. Int. J. Biol. Macromol. 2018, 107, 2580–2589. [Google Scholar] [CrossRef]
- Teli, M.K.; Kumar, S.; Yadav, D.K.; Kim, M.H. In silico identification of prolyl hydroxylase inhibitor by per-residue energy decomposition-based pharmacophore approach. J. Cell. Biochem. 2021, 122, 1098–1112. [Google Scholar] [CrossRef]
- Richmond, T.J. Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol. 1984, 178, 63–89. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Biovia, D.S. Discovery Studio Visualizer; San Diego, CA, USA, 2017; Volume 936. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 29 April 2022).
- Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016, 45, D271–D281. [Google Scholar] [PubMed]
- David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol. Biol. 2022, 434, 167336. [Google Scholar] [CrossRef]
- Anjum, F.; Mohammad, T.; Almalki, A.A.; Akhtar, O.; Abdullaev, B.; Hassan, M.I. Phytoconstituents and Medicinal Plants for Anticancer Drug Discovery: Computational Identification of Potent Inhibitors of PIM1 Kinase. Omics J. Int. Biol. 2021, 25, 580–590. [Google Scholar] [CrossRef]
- Schüttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.; Kaminskas, L.M.; Ascher, D.B. Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. In Computational Drug Discovery and Design; Humana Press: New York, NY, USA, 2018; pp. 271–284. [Google Scholar]
- Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacother. 2011, 2, 52. [Google Scholar]
- Naqvi, A.A.; Mohammad, T.; Hasan, G.M.; Hassan, M. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 2018, 18, 1755–1768. [Google Scholar] [CrossRef]
- Amir, M.; Mohammad, T.; Prasad, K.; Hasan, G.M.; Kumar, V.; Dohare, R.; Imtaiyaz Hassan, M. Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). J. Biomol. Str. Dyn. 2020, 38, 4625–4634. [Google Scholar] [CrossRef]
- Mohammad, T.; Shamsi, A.; Anwar, S.; Umair, M.; Hussain, A.; Rehman, M.T.; AlAjmi, M.F.; Islam, A.; Hassan, M.I. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Res. 2020, 288, 198102. [Google Scholar] [CrossRef]
- Tutumlu, G.; Dogan, B.; Avsar, T.; Orhan, M.D.; Calis, S.; Durdagi, S. Integrating ligand and target-driven based virtual screening approaches with in vitro human cell line models and time-resolved fluorescence resonance energy transfer assay to identify novel hit compounds against BCL-2. Front. Chem. 2020, 167, 107968. [Google Scholar] [CrossRef] [PubMed]
- Shafie, A.; Khan, S.; Mohammad, T.; Anjum, F.; Hasan, G.M.; Yadav, D.K.; Hassan, M. Identification of Phytoconstituents as Potent Inhibitors of Casein Kinase-1 Alpha Using Virtual Screening and Molecular Dynamics Simulations. Pharmaceutics 2021, 13, 2157. [Google Scholar] [CrossRef] [PubMed]
- Maisuradze, G.G.; Liwo, A.; Scheraga, H.A. Principal component analysis for protein folding dynamics. J. Mol. Biol. 2009, 385, 312–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Principal component analysis. Nat. Methods 2017, 14, 641–643. [Google Scholar] [CrossRef] [Green Version]
- Altis, A.; Otten, M.; Nguyen, P.H.; Hegger, R.; Stock, G. Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. J. Chem. Phys. 2008, 128, 06B620. [Google Scholar] [CrossRef] [PubMed]
S. No. | Compound ID | Affinity (kcal/mol) |
---|---|---|
1 | 24,901,683 | −10.9 |
2 | 5154 | −10.6 |
3 | 102,267,534 | −10.6 |
4 | 14,630,492 | −10.6 |
5 | 146,680 | −10.5 |
6 | 443,716 | −10.5 |
7 | 101,651,627 | −10.4 |
8 | 94,577 | −10.3 |
9 | 442,851 | −10.3 |
10 | 125,848 | −10.2 |
11 | 11,438,278 | −10.2 |
12 | 10,957,726 | −10.2 |
13 | 9,798,203 | −10.2 |
14 | 14,630,495 | −10.2 |
15 | 5,245,667 | −10.1 |
16 | 5,315,739 | −10.1 |
17 | 5,281,809 | −10.1 |
18 | 85,976,174 | −10.1 |
19 | 53777-78-9 | −10.0 |
20 | 97,679 | −10.0 |
21 | 4737-28-4 | −9.9 |
22 | 630,669 | −9.9 |
23 | 633,072 | −9.9 |
24 | 6,453,733 | −9.9 |
25 | 11,035,494 | −9.9 |
26 | 480,774 | −9.8 |
27 | 104,860 | −9.8 |
28 | 161,899 | −9.8 |
29 | 10,144 | −9.8 |
30 | 44,257,284 | −9.7 |
31 | Dasatinib | −9.7 |
Compound ID | Compound | Absorption | Distribution | Metabolism | Excretion | Toxicity |
---|---|---|---|---|---|---|
GI Absorption | BBB Permeation | CYP2D6 Inhibitor | OCT2 Substrate | AMES | ||
480,774 | Glabrene | High | 0.068 | No | No | No |
44,257,284 | LIC | High | −0.926 | No | No | No |
S.N | Compound | Pa | Pi | Activity |
---|---|---|---|---|
1. | Glabrene | 0.896 | 0.006 | HIF1A expression inhibitor |
0.840 | 0.026 | CYP2C12 substrate | ||
0.800 | 0.004 | Chemopreventive | ||
0.805 | 0.010 | TP53 expression enhancer | ||
0.753 | 0.018 | Antineoplastic | ||
3. | LIC | 0.848 | 0.002 | MMP9 expression inhibitor |
0.833 | 0.010 | HIF1A expression inhibitor | ||
0.802 | 0.004 | Chemopreventive | ||
0.773 | 0.014 | TP53 expression enhancer | ||
0.723 | 0.004 | AR expression inhibitor |
Compound | Chemical Name | Molecular Formula | Molecular Structure |
---|---|---|---|
Glabrene | 8-(7-hydroxy-2H-chromen-3-yl)-2,2-dimethylchromen-5-ol | C20H18O4 | |
LIC | 5,7-dihydroxy-3-[2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-benzofuran-5-yl]chromen-4-one | C20H18O6 |
System | RMSD (nm) | RMSF (nm) | Rg (nm) | SASA (nm2) | #H-Bonds |
---|---|---|---|---|---|
YES1 | 0.20 | 0.11 | 1.82 | 131 | 177 |
YES1-Glabrene | 0.21 | 0.12 | 1.84 | 135 | 178 |
YES1-LIC | 0.18 | 0.10 | 1.82 | 132 | 183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Alam, A.; Alhumaydhi, F.A.; Khan, M.S.; Alsagaby, S.A.; Al Abdulmonem, W.; Hassan, M.I.; Shamsi, A.; Bano, B.; Yadav, D.K. Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. Molecules 2022, 27, 3060. https://doi.org/10.3390/molecules27103060
Yang C, Alam A, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Shamsi A, Bano B, Yadav DK. Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. Molecules. 2022; 27(10):3060. https://doi.org/10.3390/molecules27103060
Chicago/Turabian StyleYang, Chunmin, Afsar Alam, Fahad A. Alhumaydhi, Mohd Shahnawaz Khan, Suliman A. Alsagaby, Waleed Al Abdulmonem, Md. Imtaiyaz Hassan, Anas Shamsi, Bilqees Bano, and Dharmendra Kumar Yadav. 2022. "Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics" Molecules 27, no. 10: 3060. https://doi.org/10.3390/molecules27103060
APA StyleYang, C., Alam, A., Alhumaydhi, F. A., Khan, M. S., Alsagaby, S. A., Al Abdulmonem, W., Hassan, M. I., Shamsi, A., Bano, B., & Yadav, D. K. (2022). Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. Molecules, 27(10), 3060. https://doi.org/10.3390/molecules27103060