Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of GO@Fe3O4@SiO2 and GO@Fe3O4@SiO2-PPAR-γ Nanoparticles
2.2. Assay Verification
2.3. Reusability and Reproducibility of Immobilized PPAR-γ
2.4. Identification of PPAR-γ Ligands from Choerospondias Axillaris by UHPLC-Q-Exactive Orbitrap-MS/MS
2.5. Evaluate of PPAR-γ Ligands in Choerospondias Axillaris
3. Materials and Methods
3.1. Materials and Reagents
3.2. Instrumentation
3.3. HPLC Analysis
3.4. UHPLC-Q-Exactive Orbitrap-MS/MS Analysis
3.5. Synthesis of PPAR -γ Magnetic Nano-Microspheres
3.6. Magnetic Ligand Fishing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reamy, B.V.; Williams, P.M.; Kuckel, D.P. Prevention of Cardiovascular Disease. Prim. Care 2018, 45, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Ades, P.A.; Gaalema, D.E. Coronary heart disease as a case study in prevention: Potential role of incentives. Prev. Med. 2012, 55, S75–S79. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Shen, W.-J.; Bittner, S.; Kraemer, F.B.; Azhar, S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017, 13, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Shen, W.-J.; Bittner, S.; Kraemer, F.B.; Azhar, S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol. 2017, 13, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Habib, Z.A.; Tzogias, L.; Ma, S.L.H.; Wells, K.; Divine, G.; Lanfear, D.E.; Tang, J.; Bs, R.K.; Pladevall, M.; Williams, L.K. Relationship between thiazolidinedione use and cardiovascular outcomes and all-cause mortality among patients with diabetes: A time-updated propensity analysis. Pharmacoepidemiol. Drug Saf. 2009, 18, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.C.; Gao, X.; Kang, L.; Yang, Z.; ShaNa, W.; Li, J.; Tu, P.; Chai, X. Chemical and pharmacological progress on a Tibetan folk medicine formula Bawei Chenxiang Powder. China J. Chin. Mater. Med. 2020, 45, 2063–2072. [Google Scholar] [CrossRef]
- Sun, B.; Xia, Q.; Gao, Z. Total Flavones of Choerospondias axillaris Attenuate Cardiac Dysfunction and Myocardial Interstitial Fibrosis by Modulating NF-κB Signaling Pathway. Cardiovasc. Toxicol. 2015, 15, 283–289. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Li, T.; Liu, C.; Liu, W.; Liu, J. Comparison of bioactivities and phenolic composition of Choerospondias axillaris peels and fleshes. J. Sci. Food Agric. 2016, 96, 2462–2471. [Google Scholar] [CrossRef]
- Qiu, M.; Dong, Y.-H.; Han, F.; Qin, J.-M.; Zhang, H.-N.; Du, J.-X.; Hao, X.-M.; Yang, Y.-M. Influence of total flavonoids derived from Choerospondias axillaris folium on aconitine-induced antiarrhythmic action and hemodynamics in Wistar rats. J. Toxicol. Environ. Health A 2016, 79, 878–883. [Google Scholar] [CrossRef]
- Tang, X.L.; Liu, J.X.; Li, L.; Li, P.; Ma, Y.; Shi, Y.; Li, R. Protective effect of Guangzao simulated total organic acid on myocardial ischemia-reperfusion injury. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 168–172. [Google Scholar]
- Li, C.; He, J.; Gao, Y.; Xing, Y.; Hou, J.; Tian, J. Preventive effect of total flavones of Choerospondias axillaries on ischemia/reperfusion-induced myocardial infarction-related MAPK signaling pathway. Cardiovasc. Toxicol. 2014, 14, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.L.; Liu, J.X.; Li, L.; Li, P.; Ma, Y.L.; Shi, Y.; Li, R. Cardioprotective Effects of Total Organic Acids in Fructus Choerospondiatis on Myocardial Ischemia-reperfusion Injury. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 5. [Google Scholar] [CrossRef]
- Friedman, S.L.; Roll, F. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal. Biochem. 1987, 161, 207–218. [Google Scholar] [CrossRef]
- Aspelund, M.T.; Glatz, C.E. Purification of recombinant plant-made proteins from corn extracts by ultrafiltration. J. Membr. Sci. 2010, 353, 103–110. [Google Scholar] [CrossRef]
- Tsai, Y.; Lin, C.; Chen, B. Preparative chromatography of flavonoids and saponins in Gynostemma pentaphyllum and their antiproliferation effect on hepatoma cell. Phytomed. Int. J. Phytother. Phytopharm. 2011, 18, 2–10. [Google Scholar] [CrossRef]
- Vahlsing, T.; Delbeck, S.; Budde, J.; Cocchieri, L.; Ihrig, D.; Leonhardt, S.; Heise, H.M. Ex-vivo glucose sensors using micro-dialysis: Importance of on-line recovery rate determination by multi-analyte infrared spectrometry. Int. Soc. Opt. Photonics 2015, 9332, 933209. [Google Scholar] [CrossRef]
- Ray, J.A.; Kushnir, M.M.; Bunker, A.; Rockwood, A.L.; Meikle, A.W. Direct measurement of free estradiol in human serum by equilibrium dialysis–liquid chromatography–tandem mass spectrometry and reference intervals of free estradiol in women. Clin. Chim. Acta 2012, 413, 1008–1014. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xiao, C.; Chen, D.; Xiao, Y.; Mei, Z. Rapid screening and identification of alpha-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J. Chromatography. B Anal. Technol. Biomed. Life Sci. 2014, 960, 166–173. [Google Scholar] [CrossRef]
- Lan, X.; Liao, D.; Wu, S.; Wang, F.; Sun, J.; Tong, Z. Rapid purification and characterization of angiotensin converting enzyme inhibitory peptides from lizard fish protein hydrolysates with magnetic affinity separation. Food Chem. 2015, 182, 136–142. [Google Scholar] [CrossRef]
- Vanzolini, K.L.; Ainsworth, S.; Bruyneel, B.; Herzig, V.; Seraus, M.G.; Somsen, G.W.; Casewell, N.; Cass, Q.B.; Kool, J. Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon Off J. Int. Soc. Toxinol. 2018, 152, 1–8. [Google Scholar] [CrossRef]
- Gao, X.; Mu, J.; Li, Q.; Guan, S.; Liu, R.; Du, Y.; Zhang, H.; Bi, K. Comprehensive Identification of Guan-Xin-Shu-Tong Capsule via a Mass Defect and Fragment Filtering Approach by High Resolution Mass Spectrometry: In Vitro and In Vivo Study. Molecules 2017, 22, 1007. [Google Scholar] [CrossRef] [PubMed]
- Boldizsár, I.; Kraszni, M.; Tóth, F.; Tóth, G.; Sólyomváry, A.; Noszál, B.; Záray, G.; Molnár-Perl, I. The role of harmonized, gas and liquid chromatography mass spectrometry in the discovery of the neolignan balanophonin in the fruit wall of Cirsium vulgare. J. Chromatogr. A 2012, 1264, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Kim, S.N.; Lee, S.M.; Lee, W.; Song, M.J.; Park, S.M.; Lee, T.R.; Baik, J.-H.; Kim, H.K.; Hong, J.-H.; et al. (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 2009, 77, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Vogas, R.S.; Pereira, M.T.; Duarte, L.S.; Carneiro, M.J.; Farsura, A.F.; Machado, J.A.M.; Costa, I.F.; Tomé, M.R.; Milton, F.A.; Neves, F.A.; et al. Evaluation of the anti-inflammatory potential of Solidago microglossa (Arnica-brasileira) In Vivo and its effects on PPARγ activity. An. Acad. Bras. Cienc. 2020, 92, e20191201. [Google Scholar] [CrossRef]
- Zhou, X.-R.; Sun, C.-H.; Liu, J.-R.; Zhao, D. Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Horm. IGF Res. 2008, 18, 361–368. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Tsai, S.-J.; Huang, C.-S.; Yin, M.-C. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J. Agric. Food Chem. 2011, 59, 5117–5124. [Google Scholar] [CrossRef]
- Singh, A.K.; Raj, V.; Keshari, A.K.; Rai, A.; Kumar, P.; Rawat, A.; Maity, B.; Kumar, D.; Prakash, A.; De, A.; et al. Isolated mangiferin and naringenin exert antidiabetic effect via PPAR(γ)/GLUT4 dual agonistic action with strong metabolic regulation. Chem. Biol. Interact. 2018, 280, 33–44. [Google Scholar] [CrossRef]
- Di, T.; Zhai, C.; Zhao, J.; Wang, Y.; Chen, Z.; Li, P. Taxifolin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like mouse model via regulating cytoplasmic phospholipase A2 and PPAR-γ pathway. Int. Immunopharmacol. 2021, 99, 107900. [Google Scholar] [CrossRef]
- Sauma, L.; Stenkula, K.G.; Kjølhede, P.; Strålfors, P.; Söderström, M.; Nystrom, F.H. PPAR-gamma response element activity in intact primary human adipocytes: Effects of fatty acids. Nutrition 2006, 22, 60–68. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Doble, M. Effect of Natural Products on Commercial Oral Antidiabetic Drugs in Enhancing 2-Deoxyglucose Uptake by 3T3-L1 Adipocytes. Ther. Adv. Endocrinol. Metab. 2011, 2, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Liu, J.; Dong, W.; Li, P.; Li, L.; Lin, C.; Zheng, Y.; Hou, J.; Li, D. The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med. 2013, 2013, 820695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.Y.; Subedi, L.; Shin, D.; Kim, C.S.; Lee, K.R.; Kim, S.Y. A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation. Biomol. Ther. 2017, 25, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Demerdash, A.A.; Menze, E.T.; Esmat, A.; Tadros, M.G.; Elsherbiny, D.A. Protective and therapeutic effects of the flavonoid “pinocembrin” in indomethacin-induced acute gastric ulcer in rats: Impact of anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Balupillai, A.; Prasad, R.N.; Ramasamy, K.; Muthusamy, G.; Shanmugham, M.; Govindasamy, K.; Gunaseelan, S. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-γ in Mouse Skin. Photochem. Photobiol. 2015, 91, 1458–1468. [Google Scholar] [CrossRef]
- Byun, J.W.; Hwang, S.; Kang, C.W.; Kim, J.H.; Chae, M.K.; Yoon, J.S.; Lee, E.J. Therapeutic Effect of Protocatechuic Aldehyde in an In Vitro Model of Graves’ Orbitopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4055–4062. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xia, B.; Lin, M.; Wang, Y.; Sun, B.; Li, Y. Succinic acid inhibits the activity of cytochrome P450 (CYP450) enzymes. Pharm. Biol. 2020, 58, 1150–1155. [Google Scholar] [CrossRef]
- Chi, M.; Wang, H.; Yan, Z.; Cao, L.; Gao, X.; Qin, K. Magnetic Ligand Fishing Using Immobilized Cyclooxygenase-2 for Identification and Screening of Anticoronary Heart Disease Ligands from Choerospondias axillaris. Front. Nutr. 2021, 8, 794193. [Google Scholar] [CrossRef]
- Hou, Z. Construction of PPARγ Affinity Chromatography and Screening of Targeted Active Components in Qianjinhuanglianfang. Master’s Thesis, Northwest University, Xi’an, China, 2021. [Google Scholar]
Category | Relative Activity (%) | Category | Relative Activity (%) | Category | Relative Activity (%) | |||
---|---|---|---|---|---|---|---|---|
Temp (degree) | 25 | 40.1 ± 4.5 | pH | 5 | 13.6 ± 2.1 | Dissociation solvent | Methanol | 100 ± 0.2 |
35 | 85.3 ± 3.8 | 6 | 100 ± 11.6 | PBS | ND | |||
45 | 100 ± 0.2 | 7 | 61.1 ± 6.6 | Washing times | 2 | 199.2 | ||
55 | 44.2 ± 3.8 | 8 | 54.7 ± 4.3 | 3 | 100.2 | |||
60 | 27.8 ± 3.0 | 9 | 45.0 ± 5.0 | 4 | 99.5 |
No. | Identification | Chemical Formula | tR (min) | Ion Mode | Observe Mass (Da) | Error (ppm) | MS/MS | Confidential Levels |
---|---|---|---|---|---|---|---|---|
1 | Quinine acid | C7H12O6 | 1.17 | - | 191.05528 | −4.351 | 173.05528[M-H2O-H]− 93.04486[M-2H2O-CO-2OH−-H]− | 2 |
2 | Succinic acid | C4H6O4 | 1.24 | - | 117.01888 | −3.862 | 99.00845[M-H2O-H]− 73.02924[M-CO2-H]− | 1 |
3 | Malic acid | C4H6O5 | 1.89 | - | 133.01387 | −2.831 | 115.00314[M-H2O-H]− 71.01357[M-H2O-CO2-H]− | 2 |
4 | Vanillic acid | C8H8O4 | 3.43 | - | 167.03423 | −4.502 | 152.01108[M-CH3-H]- 108.02119[M-CH3-CO2-H]− | 1 |
5 | Protocatechuic acid | C7H6O4 | 3.89 | - | 153.01872 | −3.999 | 109.02916[M-CO2-H]− | 2 |
6 | Catechin | C15H14O6 | 4.44 | - | 289.07178 | 0.064 | 245.08138[M-CO2-H]− 203.07051[M-C4H6O2-H]− | 1 |
7 | Protocatechualdehyde | C7H6O3 | 4.77 | - | 137.02383 | −4.268 | 109.02925[M-CO-H]− 93.03424[M-CO2-H]− | 2 |
8 | Caffeic acid | C9H8O4 | 5.00 | - | 179.03555 | 3.172 | 135.04459[M-CO2-H]− | 1 |
9 | Hyperoside | C21H20O12 | 5.42 | - | 463.08972 | 3.284 | 300.02646[M-C6H11O5-H]− 271.02484[M-C6H12O5-CO-H]− | 2 |
10 | Taxifolin | C15H12O7 | 5.99 | - | 303.04892 | −6.949 | 285.04056[M-H2O-H]− 125.02381[M-C9H6O4-H]− | 1 |
11 | Balanophonin | C20H20O6 | 7.90 | + | 357.13586 | 7.267 | 339.12207[M-H2O+H]+ 320.11118[M-2H2O+H]+ 137.05933[C8H8O2+H]+ | 2 |
12 | Naringenin | C15H12O5 | 8.96 | - | 271.06107 | −0.468 | 151.00325[M-C6H7O-2CH3-H]− | 1 |
13 | Palmitic acid | C16H32O2 | 9.21 | - | 255.23247 | −1.894 | / | 3 |
14 | Stearic acid | C18H36O2 | 9.73 | - | 283.26450 | 0.411 | / | 3 |
15 | Pinocembrin | C15H12O4 | 10.74 | - | 255.06564 | −2.518 | 227.07065[M-CO2-H]− 213.05502[M-CO2-CH2-H]− | 2 |
16 | Linoleic acid | C18H32O2 | 11.03 | + | 281.24634 | −4.149 | 263.23615[M-H2O+H]+ | 2 |
Time (min) | 0 | 2 | 3 | 7 | 9 | 10 | 10.01 | 12 |
A (%) | 5 | 15 | 25 | 45 | 60 | 75 | 5 | 5 |
C (%) | 95 | 85 | 75 | 55 | 40 | 25 | 95 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, M.; Qin, K.; Cao, L.; Zhang, M.; Su, Y.; Gao, X. Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris. Molecules 2022, 27, 3127. https://doi.org/10.3390/molecules27103127
Chi M, Qin K, Cao L, Zhang M, Su Y, Gao X. Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris. Molecules. 2022; 27(10):3127. https://doi.org/10.3390/molecules27103127
Chicago/Turabian StyleChi, Miaomiao, Kunming Qin, Lei Cao, Min Zhang, Yingying Su, and Xun Gao. 2022. "Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris" Molecules 27, no. 10: 3127. https://doi.org/10.3390/molecules27103127
APA StyleChi, M., Qin, K., Cao, L., Zhang, M., Su, Y., & Gao, X. (2022). Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris. Molecules, 27(10), 3127. https://doi.org/10.3390/molecules27103127