Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spetea, M.; Schmidhammer, H. Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery. Molecules 2020, 25, 5658. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, Y.; Miyano, K.; Fujii, H.; Mizuguchi, T.; Kuroda, Y.; Nonaka, M.; Komatsu, A.; Ohshima, K.; Yamaguchi, M.; Yamaguchi, K.; et al. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and beta-Arrestin-Mediated Pathways. Molecules 2021, 26, 6079. [Google Scholar] [CrossRef] [PubMed]
- Tanguturi, P.; Pathak, V.; Zhang, S.; Moukha-Chafiq, O.; Augelli-Szafran, C.E.; Streicher, J.M. Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021, 26, 6693. [Google Scholar] [CrossRef] [PubMed]
- Meqbil, Y.J.; Su, H.; Cassell, R.J.; Mores, K.L.; Gutridge, A.M.; Cummins, B.R.; Chen, L.; van Rijn, R.M. Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021, 26, 7236. [Google Scholar] [CrossRef]
- Tanguturi, P.; Pathak, V.; Zhang, S.; Moukha-Chafiq, O.; Augelli-Szafran, C.E.; Streicher, J.M. Correction: Tanguturi et al. Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021, 26, 6693, Correction in Molecules 2022, 27, 1969. [Google Scholar] [CrossRef]
- Cassell, R.J.; Mores, K.L.; Zerfas, B.L.; Mahmoud, A.H.; Lill, M.A.; Trader, D.J.; van Rijn, R.M. Rubiscolins are Naturally Occurring G protein-biased Delta Opioid Receptor Peptides. Eur. Neuropsychopharmacol. 2019, 29, 450–456. [Google Scholar] [CrossRef]
- Van Rijn, R.M.; Harvey, J.H.; Brissett, D.I.; DeFriel, J.N.; Whistler, J.L. Novel Screening Assay for the Selective Detection of G-protein-coupled Receptor Heteromer Signaling. J. Pharmacol. Exp. Ther. 2013, 344, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, E.; Hirayama, S.; Nikaido, J.; Shibasaki, M.; Kono, T.; Honjo, A.; Ikeda, H.; Kamei, J.; Fujii, H. Development of Novel delta Opioid Receptor Inverse Agonists without a Basic Nitrogen Atom and Their Antitussive Effects in Mice. ACS Chem. Neurosci. 2019, 10, 3939–3945. [Google Scholar] [CrossRef] [PubMed]
- Perlikowska, R.; do-Rego, J.C.; Cravezic, A.; Fichna, J.; Wyrebska, A.; Toth, G.; Janecka, A. Synthesis and biological evaluation of cyclic endomorphin-2 analogs. Peptides 2010, 31, 339–345. [Google Scholar] [CrossRef]
- Wtorek, K.; Lipinski, P.F.J.; Adamska-Bartlomiejczyk, A.; Piekielna-Ciesielska, J.; Sukiennik, J.; Kluczyk, A.; Janecka, A. Synthesis, Pharmacological Evaluation, and Computational Studies of Cyclic Opioid Peptidomimetics Containing β(3)-Lysine. Molecules 2021, 27, 151. [Google Scholar] [CrossRef]
- Yucel, N.T.; Osmaniye, D.; Kandemir, U.; Evren, A.E.; Can, O.D.; Demir Ozkay, U. Synthesis and Antinociceptive Effect of Some Thiazole-Piperazine Derivatives: Involvement of Opioidergic System in the Activity. Molecules 2021, 26, 3350. [Google Scholar] [CrossRef] [PubMed]
- Fritzwanker, S.; Schulz, S.; Kliewer, A. SR-17018 Stimulates Atypical µ-Opioid Receptor Phosphorylation and Dephosphorylation. Molecules 2021, 26, 4509. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell 2017, 171, 1165–1175.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, A.; Gondin, A.B.; Kliewer, A.; Sanchez, J.; Lim, H.D.; Alamein, C.; Manandhar, P.; Santiago, M.; Fritzwanker, S.; Schmiedel, F.; et al. Low Intrinsic Efficacy for G Protein Activation can Explain the Improved Side Effect Profiles of New Opioid Agonists. Sci. Signal. 2020, 13, eaaz3140. [Google Scholar] [CrossRef]
- Stahl, E.L.; Bohn, L.M. Low Intrinsic Efficacy Alone Cannot Explain the Improved Side Effect Profiles of New Opioid Agonists. Biochemistry 2021. [Google Scholar] [CrossRef]
- Paul, A.K.; Gueven, N.; Dietis, N. Profiling the Effects of Repetitive Morphine Administration on Motor Behavior in Rats. Molecules 2021, 26, 4355. [Google Scholar] [CrossRef]
- Tseng, P.Y.; Hoon, M.A. Molecular Genetics of Kappa Opioids in Pain and Itch Sensations. Handb. Exp. Pharmacol. 2022, 271, 255–274. [Google Scholar]
- Aldrich, J.V.; McLaughlin, J.P. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb. Exp. Pharmacol. 2022, 271, 197–220. [Google Scholar]
- French, A.R.; van Rijn, R.M. An updated Assessment of the Translational Promise of G-protein-biased Kappa Opioid Receptor Agonists to Treat Pain and Other Indications without Debilitating Adverse effects. Pharmacol. Res. 2022, 177, 106091. [Google Scholar] [CrossRef]
- Inui, S. Nalfurafine hydrochloride to treat pruritus: A review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Deeks, E.D. Difelikefalin: First Approval. Drugs 2021, 81, 1937–1944. [Google Scholar] [CrossRef]
- Pereira, M.P.; Stander, S. Novel drugs for the treatment of chronic pruritus. Expert Opin. Investig. Drugs 2018, 27, 981–988. [Google Scholar] [CrossRef]
- Inan, S.; Dun, N.J.; Cowan, A. Antipruritic Effect of Nalbuphine, a Kappa Opioid Receptor Agonist, in Mice: A Pan Antipruritic. Molecules 2021, 26, 5517. [Google Scholar] [CrossRef]
- Nosova, O.; Bazov, I.; Karpyak, V.; Hallberg, M.; Bakalkin, G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021, 26, 3458. [Google Scholar] [CrossRef]
- Zhao, B.; Li, W.; Sun, L.; Fu, W. The Use of Computational Approaches in the Discovery and Mechanism Study of Opioid Analgesics. Front. Chem. 2020, 8, 335. [Google Scholar] [CrossRef]
- Puls, K.; Schmidhammer, H.; Wolber, G.; Spetea, M. Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the Mu-, delta-, kappa-Opioid and Nociceptin Receptors. Molecules 2022, 27, 919. [Google Scholar] [CrossRef]
- Spetea, M.; Rief, S.B.; Haddou, T.B.; Fink, M.; Kristeva, E.; Mittendorfer, H.; Haas, S.; Hummer, N.; Follia, V.; Guerrieri, E.; et al. Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent mu/delta Opioid Agonists and Peripherally Selective Antinociceptives. J. Med. Chem. 2019, 62, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Toll, L.; Bruchas, M.R.; Calo, G.; Cox, B.M.; Zaveri, N.T. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol. Rev. 2016, 68, 419–457. [Google Scholar] [CrossRef]
- El Daibani, A.; Che, T. Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain. Molecules 2022, 27, 595. [Google Scholar] [CrossRef]
- Kiraly, K.; Karadi, D.A.; Zador, F.; Mohammadzadeh, A.; Galambos, A.R.; Balogh, M.; Riba, P.; Tabi, T.; Zadori, Z.S.; Szoko, E.; et al. Shedding Light on the Pharmacological Interactions between mu-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021, 26, 6168. [Google Scholar] [CrossRef]
- Radoi, V.; Jakobsson, G.; Palada, V.; Nikosjkov, A.; Druid, H.; Terenius, L.; Kosek, E.; Vukojevic, V. Non-Peptide Opioids Differ in Effects on Mu-Opioid (MOP) and Serotonin 1A (5-HT1A) Receptors Heterodimerization and Cellular Effectors (Ca(2+), ERK1/2 and p38) Activation. Molecules 2022, 27, 2350. [Google Scholar] [CrossRef]
- Binienda, A.; Makaro, A.; Talar, M.; Krajewska, J.B.; Tarasiuk, A.; Bartoszek, A.; Fabisiak, A.; Mosinska, P.; Niewinna, K.; Dziedziczak, K.; et al. Characterization of the Synergistic Effect between Ligands of Opioid and Free Fatty Acid Receptors in the Mouse Model of Colitis. Molecules 2021, 26, 6827. [Google Scholar] [CrossRef]
- Taskiran, A.S.; Avci, O. Effect of captopril, an Angiotensin-converting Enzyme Inhibitor, on Morphine Analgesia and Tolerance in Rats, and Elucidating the Inflammation and Endoplasmic Reticulum Stress Pathway in this Effect. Neurosci. Lett. 2021, 741, 135504. [Google Scholar] [CrossRef]
- Yamada, Y.; Ohinata, K.; Lipkowski, A.W.; Yoshikawa, M. Angiotensin AT(2) Receptor Agonists act as Anti-opioids via EP(3) Receptor in Mice. Peptides 2009, 30, 735–739. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Rijn, R.M.; Spetea, M. Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II. Molecules 2022, 27, 3140. https://doi.org/10.3390/molecules27103140
Van Rijn RM, Spetea M. Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II. Molecules. 2022; 27(10):3140. https://doi.org/10.3390/molecules27103140
Chicago/Turabian StyleVan Rijn, Richard M., and Mariana Spetea. 2022. "Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II" Molecules 27, no. 10: 3140. https://doi.org/10.3390/molecules27103140
APA StyleVan Rijn, R. M., & Spetea, M. (2022). Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II. Molecules, 27(10), 3140. https://doi.org/10.3390/molecules27103140