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Abstract: Gastropods comprise approximately 80% of molluscans, of which land snails are used
variably as food and traditional medicines due to their high protein content. Moreover, different
components from land snails exhibit antimicrobial activities. In this study, we evaluated the antifun-
gal activity of soft tissue extracts from Helix aspersa against Candida albicans, Aspergillus flavus, and
Aspergillus brasiliensis by identifying extract components using liquid chromatography-tandem mass
spectrometry (LC-MS-MS). Two concentrations of three extracts (methanol, acetone, and acetic acid)
showed antifungal activity. Both acetone (1 g/3 mL) and acetic acid extracts (1 g/mL) significantly in-
hibited C. albicans growth (p = 0.0001, 5.2 ± 0.2 mm and p = 0.02, 69.7 ± 0.6 mm, respectively). A. flavus
and A. brasiliensis growth were inhibited by all extracts at 1 g/mL, while inhibition was observed
for acetic acid extracts against A. brasiliensis (p = 0.02, 50.3 ± 3.5 mm). The highest growth inhibition
was observed for A. flavus using acetic acid and acetone extracts (inhibition zones = 38 ± 1.7 mm
and 3.1 ± 0.7 mm, respectively). LC-MS-MS studies on methanol and acetone extracts identified
11-α-acetoxyprogesterone with a parent mass of 372.50800 m/z and 287.43500 m/z for luteolin.
Methanol extracts contained hesperidin with a parent mass of 611.25400 m/z, whereas linoleic acid
and genistein (parent mass = 280.4 and 271.48900 m/z, respectively) were the main metabolites.

Keywords: Helix aspersa; soft tissue; extract; Candida albicans; Aspergillus flavus; Aspergillus
brasiliensis

1. Introduction

For hundreds of years, land snails have been used as a food source and for medical
treatments. Land snails are pharmacologically and medicinally important [1] as they are
high in protein, which they use to combat different environmental conditions [2]. Previously,
seven crude proteins were extracted from different snails. The most active crude proteins
identified in the land snail, Cryptozona bistrialis, were active against different bacterial and
fungal pathogens [3]. Therefore, snails should be considered important bioactive compound
sources with safe pharmaceutical applications as polypeptides, proteins, and glycans from
snail mucus could function as promising candidates for some dermal diseases [4].
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Similarly, protein and peptide components from the hemolymph and mucus of gar-
den snails showed antimicrobial activity [5]. Slime from the African giant land snail
Archachatina marginata demonstrated antibacterial activity against Escherichia coli (inhibi-
tion zone = 15.2 mm), Klebsiella sp. (inhibition zone = 14.2 mm), Pseudomonas aeruginosa
(13.0 mm), and Proteus mirabilis (13.3 mm) [6].

Three protein fractions from the marine snail Rapana venosa were effective against
Aspergillus niger, Botrytis cinerea, and Candida albicans [7].

Two protein fractions from the mucus of Helix aspersa (>20 kDa) and a peptide fraction
from the hemolymph of Helix lucorum (<10 kDa) were isolated, and their antibacterial
activities against E. coli and Brevindomonas diminita were characterized. Their minimum
inhibitory concentration values ranged from 145 to 682.5 µg/mL for E. coli and B. dimin-
uta [8]. In hemolymph from H. lucorum, nuclear magnetic resonance metabolic analysis and
tandem mass spectrometry (MS-MS) were used to detect metabolites (<1 kDa and <3 kDa)
with antioxidant and antimicrobial activities [9]. Ref. [10] isolated a 1485.26 Da peptide
(Cm-p1, sequence = SRSELIVHQR) from a crude extract of the marine snail, Cenchritis
muricatus, which demonstrated antifungal activity against filamentous fungi and yeast.
Moreover, the antifungal activity of a crude methanol extract from Cypraea spp. Against
C. albicans and A. niger was similarly demonstrated [11]. In other work, ethanol, acetone,
and methanol crude extracts from Babylonia spirata were effective against A. flavus and
C. albicans [12].

Fungal infections may occur in the hair, nails, and skin and may cause serious dis-
eases [13]. The total number of individuals who experience different fungal infections is
approximately 1,000,000,000. Fungal diseases may kill more than 1.5 million and affect
over a billion people. The health consequences of serious fungal infections include asthma,
serious chronic illness, blindness and corticosteroid therapies. The modern global estimates
have found ~700,000 cases of invasive candidiasis and 3,000,000 cases of chronic pulmonary
aspergillosis [14]. C. albicans causes superficial, deep tissue, and invasive candidiasis [15],
and its mortality rate is 35–60% due to disseminated candidiasis [16]. Fungal diseases
such as aspergillosis cause high mortality rates due to respiratory disorders [17]. Bron-
chopulmonary aspergillosis caused by A. fumigatus, A. flavus, and A. niger colonies in the
lung mucosa spread infection, with a mortality rate of 50–90% [18]. Therefore, antifungal
properties from bioactive compounds in invertebrates could provide new directions for
medical treatments and scientific research.

A novel neurotoxin (conotoxin TVIIA) was extracted from the sea snail Conus tulipa [19]
and was identified as belonging to the conotoxin family, which is composed of six-cysteine/
four-loop structures with pharmacological activities. The molecules block ionic calcium,
sodium, and potassium channels [20,21]. The contryphan-Vn peptide was extracted from
the Mediterranean snail, Conus ventricosus; it contained a D-tryptophan residue and main-
tained its five-residue intercystine loop. The peptide was bound to potassium channels and
displayed distinct molecular targets [22].

In this study, we isolated soft tissue extracts from H. aspersa and identified antifungal
activities against C. albicans, A. flavus, and A. brasiliensis. Extract components were identified
using liquid chromatography-mass spectrometry (LC-MS-MS).

2. Results

Two concentrations, 1 g/mL and 1 g/3 mL, of three crude extracts (methanol, acetone,
and acetic acid extracts) from the soft body (viscera) of H. aspersa were used to test for
antifungal effects against C. albicans, A. flavus, and A. brasiliensis.

Individual solvents exerted no effects on fungal growth of C. albicans except for
acetic acid (inhibition zone = 26 ± 0.3 mm). All extracts showed antifungal activity when
compared with the controls (Figure 1). Methanol and acetone extracts caused insignificant
C. albicans growth inhibition (inhibition zone = 20.06 ± 0.1 mm and 59.4 ± 1.4 mm at
1 g/mL). Acetone extracts showed significant inhibition zones against C. albicans (p = 0.0001,
5.2 ± 0.2 mm at 1 g/3 mL). In a concentration-dependent manner, acetic acid generated
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significant inhibition zones against C. albicans (ANOVA, p = 0.02, 69.7 ± 0.6 mm at 1 g/mL
(1:1)) (Figure 2).

The antifungal drug fluconazole (25 µg/mL) inhibited C. albicans growth at 19 ± 0.1 mm
(Figure 1).

The antifungal drug fluconazole (25 µg/mL) inhibited A. brasiliensis and A. flavus
growth at 17 ± 0.4 mm and 14 ± 0.1 mm, respectively. The solvents had no effects on
fungal growth except for acetic acid (inhibition zone = 15 ± 0.1 mm and 10 ± 0.5 mm for
A. brasiliensis and A. flavus, respectively) (Figure 1). Both A. flavus and A. brasiliensis growth
was inhibited by all extracts at 1 g/mL. Still, inhibition was significant for the acetic acid
extract against A. brasiliensis (ANOVA, p = 0.02, 50.3 ± 3.5 mm) (Figures 1 and 3).
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Figure 1. Antifungal activity of the methanol, acetone and acetic acid viscera extracts of the H. aspersa.
(a) C. albicans with methanol (1), acetone (2) and (b) acetic acid (3). (c) C. albicans growth with the
antifungal drug, namely fluconazole (25 µg/mL). (d) C. albicans growth with methanolic viscera
extract. (e) C. albicans growth with acetone viscera extract. (f) C. albicans growth with acetic acid
viscera extract. (g) A. brasiliensis growth with the antifungal drug fluconazole (25 µg/mL). (h) A. flavus
growth with the antifungal drug fluconazole (25 µg/mL). (i) A. brasiliensis growth with methanol
viscera extract (1), acetone viscera extract (2) and acetic acid viscera extract (3). (j) A. flavus growth
with methanol viscera extract (1), acetone viscera extract (2) and acetic acid viscera extract (3).
Arrowheads are pointing to the inhibition zone.
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The most significant growth inhibition was observed for A. flavus against acetic acid
and acetone extracts (inhibition zones = 38 ± 1.7 mm and 3.1 ± 0.7 mm, respectively).

Identified Compounds Using LC-MS-MS Analysis

Plant metabolome mass profiles were screened using the Global Natural Products
Social Molecular Networking (GNPS) database (Figure S1, Table 1). Five compounds were
identified: genistein, luteolin, and hesperidin are flavonoid compounds, linoleic acid is a
fatty acid, and 11-α-acetoxyprogesterone is a steroid compound.
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Table 1. The identified metabolites’ parent masses and fragments from the raw mass spectrum
compared with that of the molecular networking database and data published.

Compound Name Parent Mass (m/z) M.F Fragments from the
Raw Mass Spectrum

Fragments from
GNPS Database Reference

Genistein 1,2 271.48900 C15H10O5
144.96, 148.98, 152.92,
214.96, 255.03, 242.95

144.98, 148.39,
152.94, 215.06,
255.01, 242.02

Luteolin 1,2,3,4 287.43500 C15H10O6

110.98, 134.96, 152.90,
161.00, 241.00,
259.00, 269.00

111.00, 135.00,
153.00, 160.98,

241.04,
259.04, 269.05

[23,24]

Linoleic acid 1,2 280.4 g C18H32O2
153,95, 176.90,
219.07, 286.03

153,02, 177.06,
219.07, 286.10

11-alpha-
Acetoxyprogesterone 1,2,3,4 372.50800 C23H32O4

172.95, 277.14,
294.19, 312.15

173.10, 277.18,
295.20, 313.22 [25]

Hesperidin 611.25400 C28H34O15

303.05, 345.05, 413.06,
449.07, 465.07, 489.10,

557.20, 593.29

303.05, 345.05,
413.06, 449.07,
465.07, 489.10,
557.20, 593.29

[26]

1 sample codex “methanol extract (1 g/3 mL)”, 2 “methanol extract(1 g/mL)”, 3 “acetone extract (1 g/3 mL)”,
4 “acetone extract (1 g/mL)”.

3. Discussion

Our data indicated that all extracts from the snail Helix aspersa have bioactive ingredi-
ents which exerted antifungal activities against C. albicans, A. flavus, and A. brasiliensis in a
concentration-dependent manner. Furthermore, our results were supported by [12], who
extracted bioactive compounds from the marine snail, B. spirata. Moreover, the antibacterial
activity of crustacean and molluscan methanol extracts was higher when compared with
water extracts [3].

The antifungal activity of extracts may have been related to their metabolite compo-
nents, as demonstrated by LC-MS-MS; the most common component was hesperidin, with
a parent mass = 611.25400. This flavanone glycoside induced apoptosis and cell cycle ar-
rest [27,28] and showed antifungal, antiviral, antihelminthic, antioxidant, and molluscicidal
activities toward Schistosoma mansoni. Genistein is also present in plants and humans and is
an isoflavone with antihelminthic qualities [29]. Genistein was speculated to inhibit fungal
growth due to its apoptosis-inducing characteristics [30]. Genistein also induced apoptosis
in human cancer cells by triggering both caspase-3 and caspase-9 activity, causing cell death
by inhibiting NF-κB signaling and altering levels of the antiapoptotic protein Bcl-2 and
proapoptotic protein. In addition, genistein excited oxidative stress-induced apoptosis by
increasing nitric oxide production and its bioavailability [31–33]. Furthermore, genistein
is an estrogenic isoflavone found in the molluscan tissues, and its receptors were isolated
from the cerebral ganglia of the gastropod Thais clavigera [34].

The mass of 11-α-acetoxyprogesterone was 372.50800. Progesterone is a steroid hor-
mone that functions as a substantial metabolic intermediate during corticosteroid and sex
hormone production and also functions as a neurosteroid [35,36]. The antifungal effects of
this compound are facilitated by the presence of high-affinity progesterone-binding sites in
the plasma membrane, as confirmed by [37] in Rhizopus nigricans. A corticosteroid-binding
protein and steroid receptor were identified by [38] in C. albicans [39] as well as other fungal
species. Progesterone is considered an effective fungal growth inhibitor [40]. Its growth
inhibition is related to reduced intracellular cyclic adenosine monophosphate(cAMP) levels
that are crucial arbiters of fungal growth and responses to nutritional stress [41].

Luteolin is a tetrahydroxyflavone and exerts antifungal effects against C. albicans [42].
The fungal growth inhibition was reported whereby plasma membrane disruption led to
membrane permeability changes and excess reactive oxygen species (ROS) production [43].
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The ROS effects are mainly directed toward membrane lipids in C. albicans, which generate
lipid hydroperoxides and thus lipid peroxidation [44]. The induction of mitochondrial
dysfunction via inhibited mitochondrial electron transport chain reduces ATP synthesis
and causes cell death by inhibiting cell wall formation, cell division, and RNA and protein
synthesis [45].

Linoleic acid is a polyunsaturated essential fatty acid that reduces biomass production
in Rhizoctonia solani, Pythium ultimum, Pyrenophora avenae, and Crinipellis perniciosa, while
1000 µM linoleic acid reduces mycelial growth in R. solani, P. ultimum, and P. avenae [46].
Linoleic acid is a structural component related to membrane fluidity functions and directly
interacts with fungal cell membranes by entering lipid bilayers, increasing membrane
fluidity, disorganizing cell membranes, and causing cell disintegration [47]. Antifungal
fatty acids can replace synthetic agrochemicals that control fungal pathogens [48]. The
antifungal activity of linoleic acid was reported against Aspergillus amylovorus (NRRL 5813)
and A. flavus (NRRL 3518) [49,50]) reported its antifungal activity against C. albicans and
Candida parapsilosis [50].

In conclusion, soft tissue extract metabolites from H. aspersa are promising antifun-
gal agents.

4. Materials and Methods
4.1. Sample Collection and Care

Wild H. aspersa were collected from infested ornamental fruit and grass plants in
Menoufia governorate, Egypt. Snails were maintained under the following laboratory con-
ditions: 12 h:12 h light/dark photoperiod, room temperature, and relative humidity, 85%.
Approximately 10–15 individuals (average weight = 4 g) were placed in glass containers
(15 × 15 × 22 cm) filled with moist soil (sandy loam) and covered in muslin for ventilation.
Fresh lettuce leaves (Lactuca sativa) and water for soil humidity were supplied daily. Waste
food and fecal matter were removed at the end of every other day. Snails were acclimatized
under laboratory conditions for at least 4 weeks.

4.2. Tissue Extraction

Snails were rinsed, and the shells removed. The soft body (viscera) was cut into small
pieces and homogenized in different solvents, methanol, acetone, and acetic acid [3,12].
Solvent tissue homogenization was performed on ice. Two concentrations of the three
solvents (methanol, acetone and acetic acid) were used: 1 and 3 mL for one gram of tissue
(viscera). Homogenates were centrifuged at maximum speed in a refrigerated centrifuge,
added to clean tubes, and maintained on ice till the inculcation of samples. Crude extracts
were used for antifungal assays against the fungal pathogens, C. albicans, A. flavus, and
A. brasiliensis.

4.3. Antifungal Assays

Two concentrations (1 g/mL and 1 g/3 mL) of the three crude extracts (methanol,
acetone and acetic acid extracts) were prepared to test the growth inhibition of C. albicans,
A. flavus, and A. brasiliensis (ATCC 16404) clinical isolates.

Antifungal activity was determined using the agar well diffusion method [51]. Nutri-
ent agar plates were aseptically spread with 24 h cultures from respective pathogens and
incubated for 15 min in a laminar chamber to facilitate absorption. Next, 5 mm wells were
aseptically cut in the agar for visceral extract addition—100 µL of each extract was added,
and plates were left for 1 h for infusion. Then, plates were incubated at 37 ◦C for 24 h, after
which extract inhibition zone diameters were measured in mm. Fluconazole (25 µg/mL)
was used as a positive control. All tests were performed in triplicate, and mean values were
recorded for statistical analysis.
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4.4. Chemical Analysis of Extracts

Methanol and acetone extracts were analyzed using LC-MS-MS. A Shimadzu LC-
10 high-performance liquid chromatography instrument with a Grace Vydac Everest
Narrowbore C18 column (100 mm × 2.1 mm i.d., 5 µm, 300 Å) was connected to an
LCQ electrospray ion trap MS (Thermo Finnigan, San Jose, CA, USA). Raw data files
were converted to mzXML format using MSConvert from the ProteoWizard suite (http:
//proteowizard.sourceforge.net/tools.shtml, (accessed on 1 March 2022).). A molecular
network was created using the GNPS online workflow. Spectra in the network were then
searched against GNPS spectral libraries and published data [52].

4.5. Statistical Analysis

Data were expressed as the mean ± standard deviation and analyzed using Statgraph-
ics Centurion XVI (Stat-Point Technologies Inc., Warrenton, VA, USA). Statistical analysis
was conducted using a two-way analysis of variance to identify differences between tissue
extracts and solvents and tissue extracts and concentrations. A probability p ≤ 0.05 level
was accepted as significant.
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