Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design
2.2. Synthesis
2.3. Anti-Proliferative Activity
2.4. Crystal Structures
2.5. In Silico Studies
2.5.1. Inverse Docking
2.5.2. Molecular Dynamic Simulation
3. Discussion
4. Materials and Methods
4.1. Chemical Reagents and Instruments
4.2. The Synthesis of Compounds 7a–f, 13a–f
4.2.1. (2R)-1-(4-Bromobenzenesulfonyl)pyrrolidine-2-carboxylic Acid (1a)
4.2.2. (2R)-1-(4-Bromobenzenesulfonyl)pyrrolidine-2-carboxylate Methyl Ester (2)
4.2.3. (2R)-1-[4-(4-Methyl-1,3,2-dioxaborolane-2-yl)benzenesulfonyl]pyrrolidine-2-carboxylate Methyl Ester (3)
4.2.4. (2R)-1-[4-(4-Nitrophenyl)benzenesulfonyl]pyrrolidine-2-carboxylic Acid Methyl Ester (4a)
4.2.5. (2R)-1-[4-(6-Nitropyridin-3-yl)phenyl]pyrrolidine-2-carboxylic Acid Methyl Ester (4b)
4.2.6. (2S)-1-[4-(4-Nitrophenyl)benzenesulfonyl]pyrrolidine-2-carboxylate Methyl Ester (10a)
4.2.7. (2S)-1-[4-(6-Nitropyridin-3-yl)phenyl]pyrrolidine-2-carboxylic Acid Methyl Ester (10b)
4.2.8. (2R)-1-[4-(4-Aminophenyl)benzenesulfonyl]pyrrolidine-2-carboxylic Acid Methyl Ester (5a)
4.2.9. General Method of Amide Condensation Reaction
4.2.10. Synthesis of Compounds 7a–7f and 12a–12f
4.2.11. (2R)-Methyl 1-{4-[4-[4-(2-Aminoacetamido)phenyl]benzenesulfonyl}pyrrolidine-2-carboxylate (7a)
4.2.12. (2R)-1-(4-{4-[(2R)-2-Aminopropionamido]phenyl}benzenesulfonyl)pyrrolidine-2-carboxylate Methyl Ester (7b)
4.2.13. Methyl (2R)-1-(4-{4-[(2S)-2-Aminopropionamido]phenyl}benzenesulfonyl)pyrrolidine-2-carboxylate (7c)
4.2.14. Synthesis of (2R)-1-{4-[6-[2-(2-Aminoacetamido)pyridin-3-yl]benzenesulfonyl}pyrrolidine-2-carboxylate Methyl Ester (7d)
4.2.15. Methyl (2R)-1-(4-{6-[(2R)-2-Aminopropionamido]pyridin-3-yl}benzenesulfonyl)pyrrolidine-2-carboxylate (7e)
4.2.16. (2R)-1-(4-{6-[(2S)-2-Aminopropionamido]pyridin-3-yl}benzenesulfonyl)pyrrolidine-2-carboxylate Methyl Ester (7f)
4.2.17. (2S)-Methyl 1-{4-[4-[4-(2-Aminoacetamido)phenyl]benzenesulfonyl}pyrrolidine-2-carboxylate (13a)
4.2.18. (2S)-1-(4-{4-[(2R)-2-Aminopropionamido]phenyl}benzenesulfonyl)pyrrolidine-2-carboxylate Methyl Ester (13b)
4.2.19. Methyl (2S)-1-(4-{4-[(2S)-2-Aminopropionamido]phenyl}benzenesulfonyl)pyrrolidine-2-carboxylate (13c)
4.2.20. (2S)-1-{4-[6-[2-(2-Aminoacetamido)pyridin-3-yl]benzenesulfonyl}pyrrolidine-2-carboxylate Methyl Ester (13d)
4.2.21. Methyl (2S)-1-(4-{6-[(2R)-2-Aminopropionamido]pyridin-3-yl}benzenesulfonyl)pyrrolidine-2-carboxylate (13e)
4.2.22. (2S)-1-(4-{6-[(2S)-2-Aminopropionamido]pyridin-3-yl}benzenesulfonyl)pyrrolidine-2-carboxylate Methyl Ester (13f)
4.3. In Vitro Antiproliferative Activities and Cytotoxicity Studies
4.4. Crystallography
4.5. Reverse Docking
4.5.1. Protein Preparation
4.5.2. Generation of Receptor Grid
4.5.3. Ligand Preparation
4.5.4. Docking and Reverse Docking
4.5.5. Molecular Dynamics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Verza, F.A.; Das, U.; Fachin, A.L.; Dimmock, J.R.; Marins, M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers 2020, 12, 1664. [Google Scholar] [CrossRef] [PubMed]
- Pazin, M.J.; Kadonaga, J.T. What’s up and down with histone deacetylation and transcription? Cell 1997, 89, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, K.; Boyault, C.; Pabion, M.; Khochbin, S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 2008, 90, 306–312. [Google Scholar] [CrossRef]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769–784. [Google Scholar] [CrossRef]
- Shakespear, M.R.; Halili, M.A.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011, 32, 335–343. [Google Scholar] [CrossRef]
- Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009, 32, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, A. Epigenetic drug discovery: A success story for cofactor interference. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2018, 373, 1748. [Google Scholar] [CrossRef]
- Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem. 2020, 63, 12460–12484. [Google Scholar] [CrossRef]
- Lu, X.; Ning, Z.; Li, Z.; Cao, H.; Wang, X. Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis. Res. 2016, 5, 185–191. [Google Scholar] [CrossRef] [Green Version]
- De Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016, 12, 741–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X.F.; Yao, T.P. HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw, N.; Parsons, J.T.; Yang, X.J.; Dent, S.R.; et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 2007, 27, 197–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 2005, 280, 26729–26734. [Google Scholar] [CrossRef] [Green Version]
- Aldana-Masangkay, G.I.; Sakamoto, K.M. The role of HDAC6 in cancer. J. Biomed. Biotechnol. 2011, 2011, 875824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, C.; Schnekenburger, M.; Dicato, M.; Diederich, M. Histone deacetylase 6 in health and disease. Epigenomics 2015, 7, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Gaisina, I.N.; Tueckmantel, W.; Ugolkov, A.; Shen, S.; Hoffen, J.; Dubrovskyi, O.; Mazar, A.; Schoon, R.A.; Billadeau, D.; Kozikowski, A.P. Identification of HDAC6-selective inhibitors of low cancer cell cytotoxicity. ChemMedChem 2016, 11, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Kwon, S.; Yamaguchi, T.; Cubizolles, F.; Rousseaux, S.; Kneissel, M.; Cao, C.; Li, N.; Cheng, H.L.; Chua, K.; et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell Biol. 2008, 28, 1688–1701. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, K.; Ali, A.; Ishaq, R.; Palazzo, A.; Sliwa, D.; Bluteau, O.; Souquère, S.; Muller, D.; Diop, K.M.; Rameau, P.; et al. Critical role of the HDAC6-cortactin axis in human megakaryocyte maturation leading to a proplatelet-formation defect. Nat. Commun. 2017, 8, 1786. [Google Scholar] [CrossRef]
- Haggarty, S.J.; Koeller, K.M.; Wong, J.C.; Grozinger, C.M.; Schreiber, S.L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 2003, 100, 4389–4394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Almeciga-Pinto, I.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Yang, M.; Jones, S.S.; Quayle, S.N. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 2017, 8, 2694–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochems, J.; Boulden, J.; Lee, B.G.; Blendy, J.A.; Jarpe, M.; Mazitschek, R.; Van Duzer, J.H.; Jones, S.; Berton, O. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014, 39, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842–10846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579–2589. [Google Scholar] [CrossRef]
- Shen, S.; Kozikowski, A.P. Why hydroxamates may not be the best histone deacetylase inhibitors—What some may have forgotten or would rather forget? ChemMedChem 2016, 11, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Qin, M.; Wu, H.P.; Khamis, M.Y.; Li, Y.H.; Ma, L.Y.; Liu, H.M. A review of progress in histone deacetylase 6 inhibitors research: Structural specificity and functional diversity. J. Med. Chem. 2021, 64, 1362–1391. [Google Scholar] [CrossRef]
- Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem. 2012, 4, 505–524. [Google Scholar] [CrossRef] [Green Version]
- Van Veggel, M.; Westerman, E.; Hamberg, P. Clinical pharmacokinetics and pharmacodynamics of panobinostat. Clin. Pharmacokinet. 2018, 57, 21–29. [Google Scholar] [CrossRef]
- Lv, W.; Zhang, G.; Barinka, C.; Eubanks, J.H.; Kozikowski, A.P. Design and synthesis of mercaptoacetamides as potent, selective, and brain permeable histone deacetylase 6 inhibitors. ACS Med. Chem. Lett. 2017, 8, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Segretti, M.C.; Vallerini, G.P.; Brochier, C.; Langley, B.; Wang, L.; Hancock, W.W.; Kozikowski, A.P. Thiol-based potent and selective HDAC6 inhibitors promote tubulin acetylation and T-regulatory cell suppressive function. ACS Med. Chem. Lett. 2015, 6, 1156–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurohara, T.; Tanaka, K.; Takahashi, D.; Ueda, S.; Yamashita, Y.; Takada, Y.; Takeshima, H.; Yu, S.; Itoh, Y.; Hase, K.; et al. Identification of novel histone deacetylase 6-selective inhibitors bearing 3,3,3-trifluorolactic amide (TFLAM) motif as a zinc binding group. Chembiochem 2021, 22, 3158–3163. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Zhang, C.M.; Liu, Z.P. Evaluation of WO2017018805: 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors. Expert Opin. Ther. Pat. 2018, 28, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Lee, K.; Kim, D. Using reverse docking for target identification and its applications for drug discovery. Expert. Opin. Drug Discov. 2016, 11, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Galati, S.; Di Stefano, M.; Martinelli, E.; Poli, G.; Tuccinardi, T. Recent advances in in silico target fishing. Molecules 2021, 26, 5124. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, G.; Zhou, Y.; Lin, C.; Chen, S.; Lin, Y.; Mai, S.; Huang, Z. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front. Chem. 2018, 6, 138. [Google Scholar] [CrossRef]
- Negi, A.; Bhandari, N.; Shyamlal, B.R.K.; Chaudhary, S. Inverse docking based screening and identification of protein targets for Cassiarin alkaloids against Plasmodium falciparum. Saudi. Pharm. J. 2018, 26, 546–567. [Google Scholar] [CrossRef]
- Da Matta, C.B.; de Queiroz, A.C.; Santos, M.S.; Alexandre-Moreira, M.S.; Gonçalves, V.T.; Del Cistia Cde, N.; Sant’Anna, C.M.; DaCosta, J.B. Novel dialkylphosphorylhydrazones: Synthesis, leishmanicidal evaluation and theoretical investigation of the proposed mechanism of action. Eur. J. Med. Chem. 2015, 101, 1–12. [Google Scholar] [CrossRef]
- Knoll, K.E.; van der Walt, M.M.; Loots, D.T. In silico drug discovery strategies identified ADMET properties of decoquinate RMB041 and its potential drug targets against Mycobacterium tuberculosis. Microbiol. Spectr. 2022, 10, e0231521. [Google Scholar] [CrossRef]
- Korukonda, R.; Guan, N.; Dalton, J.T.; Liu, J.; Donkor, I.O. Synthesis, calpain inhibitory activity, and cytotoxicity of P2-substituted proline and thiaproline peptidyl aldehydes and peptidyl alpha-ketoamides. J. Med. Chem. 2006, 49, 5282–5290. [Google Scholar] [CrossRef]
- Liang, T.; Xue, J.; Yao, Z.; Ye, Y.; Yang, X.; Hou, X.; Fang, H. Design, synthesis and biological evaluation of 3,4-disubstituted-imidazolidine-2,5-dione derivatives as HDAC6 selective inhibitors. Eur. J. Med. Chem. 2021, 221, 113526. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Hou, X.; Zhou, Y.; Yang, X.; Fang, H. Design, synthesis, and biological evaluation of 2,4-imidazolinedione derivatives as HDAC6 isoform-selective inhibitors. ACS Med. Chem. Lett. 2019, 10, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; et al. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem. 2016, 59, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fonseca, R.A.; Sixto-López, Y.; Fragoso-Vázquez, M.J.; Flores-Mejía, R.; Cabrera-Pérez, L.C.; Vázquez-Moctezuma, I.; Rosales-Hernández, M.C.; Bello, M.; Martínez-Archundia, M.; Trujillo-Ferrara, J.G.; et al. Design, synthesis and biological evaluation of a phenyl butyric acid derivative, N-(4-chlorophenyl)-4-phenylbutanamide: A HDAC6 inhibitor with anti-proliferative activity on cervix cancer and leukemia cells. Anticancer Agents Med. Chem. 2017, 17, 1441–1454. [Google Scholar] [PubMed]
- Li, S.; Zhao, C.; Zhang, G.; Xu, Q.; Liu, Q.; Zhao, W.; Chou, C.J.; Zhang, Y. Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorg. Chem. 2021, 116, 105278. [Google Scholar] [CrossRef]
- Lee, H.Y.; Nepali, K.; Huang, F.I.; Chang, C.Y.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Yang, C.R.; Liou, J.P. N-Hydroxycarbonylbenylamino quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem. 2018, 61, 905–917. [Google Scholar] [CrossRef]
- Kashyap, K.; Kakkar, R. Exploring structural requirements of isoform selective histone deacetylase inhibitors: A comparative in silico study. J. Biomol. Struct. Dyn. 2021, 39, 502–517. [Google Scholar] [CrossRef]
- Agilent Technologies. CrysAlisPRO; Agilent Technologies: Yarnton, UK, 2012. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
HL-60 (%) | Hela (%) | RPMI 8226 (%) | ||||
---|---|---|---|---|---|---|
50 μM | 10 μM | 50 μM | 10 μM | 50 μM | 10 μM | |
7a | 97.24 ± 0.02 | 42.45 ± 1.11 | 99.84 ± 0.11 | 98.11 ± 1.33 | 99.78 ± 0.03 | 74.54 ± 1.06 |
7b | 46.90 ± 1.33 | 4.32 ± 1.35 | 2.44 ± 0.72 | −10.88 ± 2.58 | 41.40 ± 1.25 | −4.81 ± 3.62 |
7c | 49.65 ± 0.82 | 2.78 ± 0.70 | 8.63 ± 2.03 | −13.50 ± 1.33 | 49.67 ± 1.35 | 1.42 ± 0.97 |
7d | 16.90 ± 1.74 | 5.53 ± 1.21 | 41.81 ± 2.62 | −5.24 ± 0.18 | 89.68 ± 1.48 | 1.70 ± 0.72 |
7e | 17.79 ± 0.86 | −0.89 ± 2.31 | 7.27 ± 0.41 | −11.93 ± 1.69 | 24.41 ± 0.79 | −2.63 ± 2.86 |
7f | 28.22 ± 0.98 | 11.08 ± 0.74 | 21.60 ± 6.65 | −2.62 ± 1.36 | 29.44 ± 5.22 | −4.38 ± 0.19 |
13a | 99.25 ± 0.08 | 58.95 ± 2.12 | 99.68 ± 0.17 | 98.74 ± 0.04 | 99.89 ± 0.06 | 63.09 ± 1.99 |
13b | 100.03 ± 0.04 | 43.49 ± 0.21 | 62.27 ± 0.57 | −4.83 ± 3.13 | 97.45 ± 0.36 | 0.89 ± 3.52 |
13c | 96.55 ± 0.22 | 20.01 ± 2.83 | 72.33 ± 1.57 | −3.69 ± 0.34 | 82.94 ± 2.04 | 29.56 ± 0.48 |
13d | 99.93 ± 0.05 | 32.02 ± 3.20 | 33.36 ± 1.97 | −18.41 ± 2.15 | 92.27 ± 0.08 | 0.01 ± 0.52 |
13e | 99.98 ± 0.05 | 17.43 ± 0.16 | 81.57 ± 1.09 | −12.57 ± 1.59 | 94.89 ± 0.02 | 5.50 ± 1.12 |
13f | 99.81 ± 0.12 | 13.87 ± 0.73 | 91.57 ± 0.51 | −6.37 ± 0.44 | 89.23 ± 0.24 | 12.38 ± 0.52 |
SAHA | 98.90 ± 0.04 | 99.06 ± 0.12 | 99.78 ± 0.15 | 96.06 ± 0.70 | 99.78 ± 0.01 | 99.61 ± 0.08 |
Compounds | HL-60 (IC50, μM) | Hela (IC50, μM) | RPMI8226 (IC50, μM) |
---|---|---|---|
7a | 10.82 | 0.31 | 4.16 |
13a | 7.23 | 5.19 | 5.85 |
13b | 10.29 | 20.58 | 25.15 |
13c | 30.93 | 20.59 | 10.72 |
13d | 10.50 | 17.35 | 32.20 |
SAHA | 1.23 | 1.27 | 0.56 |
SAHA | 7a | 13a | 13b | 13c | |
---|---|---|---|---|---|
HL-7702 (μM) | 2.03 | 21.07 | 27.47 | 89.12 | 43.70 |
Parameter | 2 | 8 | 7a | 7d | 13a |
---|---|---|---|---|---|
Crystal Data | |||||
CCDC number | 2155133 | 2155134 | 2115970 | 2115971 | 2115972 |
Empirical formula | C12H14BrNO4S | C12H14BrNO4S | C20H23N3O5S | C19H22N4O5S | C20H23N3O5S |
Formula weight | 348.21 | 348.21 | 417.47 | 418.46 | 417.47 |
Temperature (K) | 293 | 293 | 150 | 302 | 170 |
Crystal system | Orthorhombic | Orthorhombic | Monoclinic | Triclinic | Monoclinic |
Space group | P212121 | P212121 | P21 | P1 | P21 |
a, b, c (Å) | 7.6596 (2), 11.6235 (4), 16.3495 (4) | 7.6570 (2), 11.6273 (3), 16.3560 (4) | 11.3510 (2), 8.1776 (1), 20.93 (3) | 6.4849 (1), 7.5288 (1), 21.4581 (4) | 11.3506 (2), 8.1854 (1), 20.98 (3) |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 | 90, 92.11(10), 90 | 85.82(10), 85.05(10), 69.09(10) | 90, 92.01(10), 90 |
Volume (Å3) | 1455.61 (8) | 1456.17 (6) | 1942.16 (5) | 974.07 (3) | 1948.06 (5) |
Z | 4 | 4 | 4 | 2 | 4 |
Radiation type | Cu Kα | Cu Kα | Cu Kα | Cu Kα | Cu Kα |
µ (mm−1) | 5.29 | 5.29 | 1.82 | 1.83 | 1.81 |
Data Collection | |||||
Diffractometer | Xcalibur, Atlas, Gemini ultra | Xcalibur, Atlas, Gemini ultra | Bruker APEX-II CCD | Bruker APEX-II CCD | Bruker APEX-II CCD |
Absorption correction | Multi-scan | Multi-scan | Multi-scan | Multi-scan | Multi-scan |
No. of measured, independent, and observed [I > 2σ(I)] reflections | 9924, 2556, 2358 | 15611, 2586, 2407 | 53010, 7050, 6271 | 30937, 6921, 6370 | 31494, 7849, 7433 |
Rint | 0.048 | 0.059 | 0.050 | 0.036 | 0.044 |
Theta range for data collection | −4 ≤ h ≤ 9, −13 ≤ k ≤ 13, −19 ≤ l ≤ 19 | −8 ≤ h ≤ 9, −13 ≤ k ≤ 13, −18 ≤ l ≤ 19 | −13 ≤ h ≤ 13, −9 ≤ k ≤ 9, −25≤ l ≤ 25 | −7 ≤ h ≤7, −9 ≤ k ≤ 9, −25≤ l ≤ 25 | −4 ≤ h ≤ 9, −13 ≤ k ≤ 13, −19 ≤ l ≤ 19 |
Refinement | |||||
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.161, 1.22 | 0.054, 0.134, 1.18 | 0.032, 0.084, 1.04 | 0.032, 0.084, 1.03 | 0.032, 0.084, 1.06 |
No. of reflections | 2556 | 2586 | 7050 | 6921 | 7849 |
H-atom treatment | H-atom parameters constrained | ||||
Δρmax, Δρmin (e Å−3) | 0.64, −1.81 | 0.50, −1.26 | 0.32, −0.21 | 0.25, −0.21 | 0.38, −0.25 |
Absolute structure parameter | −0.033 (14) | −0.034 (19) | 0.037 (7) | 0.057 (6) | 0.011 (6) |
Targets | PDB ID | Resolution (Å) | RMSD (Å) | Docking Score (kcal/mol) | Reverse Docking Score (kcal/mol) | |
---|---|---|---|---|---|---|
Native Ligand | 7a | TSN | ||||
HDAC1 | 5ICN | 3.30 | 3.66 | −8.8 | −8.30 | −8.60 |
HDAC2 | 4LXZ | 1.85 | 0.79 | −5.62 | −7.92 | −8.51 |
HDAC3 | 4A69 | 2.06 | NA | NA | −7.52 | −8.53 |
HDAC4 | 2VQM | 1.80 | 2.25 | −8.03 | −7.37 | −7.21 |
HDAC6 | 5EDU | 2.79 | 1.71 | −8.88 | −8.57 | −9.06 |
HDAC7 | 3C10 | 2.00 | 1.17 | −7.32 | −7.09 | −6.89 |
HDAC8 | 1T69 | 2.91 | 1.98 | −5.49 | −7.32 | −9.66 |
HDAC10 | 6WDY | 2.65 | 0.82 | −9.49 | −8.34 | −8.58 |
HDAC5 | Q9UQL6 * | NA | NA | NA | −7.01 | −7.08 |
HDAC9 | Q9UKV0 * | NA | NA | NA | −7.61 | −7.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Tang, H.; Xu, Y.; Guo, J.; Zhao, X.; Meng, Q.; Xiao, J. Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors. Molecules 2022, 27, 3335. https://doi.org/10.3390/molecules27103335
Xu Y, Tang H, Xu Y, Guo J, Zhao X, Meng Q, Xiao J. Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors. Molecules. 2022; 27(10):3335. https://doi.org/10.3390/molecules27103335
Chicago/Turabian StyleXu, Yangrong, Hangjun Tang, Yijie Xu, Jialin Guo, Xu Zhao, Qingguo Meng, and Junhai Xiao. 2022. "Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors" Molecules 27, no. 10: 3335. https://doi.org/10.3390/molecules27103335
APA StyleXu, Y., Tang, H., Xu, Y., Guo, J., Zhao, X., Meng, Q., & Xiao, J. (2022). Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors. Molecules, 27(10), 3335. https://doi.org/10.3390/molecules27103335