Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation—A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. The Neurites Length
2.2. The Neurites Density
3. Discussion
4. Materials and Methods
4.1. Cell Line and Conditions
4.2. Experimental Design
4.3. The Neurites Length and Density Measurement
4.4. Immunofluorescence Procedure
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oroszi, T.; Van Heuvelen, M.J.; Nyakas, C.; Van Der Zee, E.A. Vibration detection: Its function and recent advances in medical applications. F1000Research 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Mosabbir, A.; Almeida, Q.J.; Ahonen, H. The Effects of Long-Term 40-Hz Physioacoustic Vibrations on Motor Impairments in Parkinson’s Disease: A Double-Blinded Randomized Control Trial. Healthcare 2020, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Helen Edwards, J.; Clair Reilly, G. Vibration stimuli and the differentiation of musculoskeletal progenitor cells: Review of results in vitro and in vivo. World J. Stem Cells. 2015, 7, 568–582. [Google Scholar] [CrossRef]
- Choi, W.; Mizukami, K. The effect of whole body vibration by sonic waves on mood, the autonomic nervous system, and brain function in elderly. Nippon Ronen Igakkai Zasshi. Jpn. J. Geriatr. 2020, 57, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Gu, Y.; Bai, Y.; Xia, S.; Zhang, Y.; Lou, Y.; Zhu, Y.; Dai, Y.; Tsoi, J.K.-H.; Wang, S. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies. Front. Bioeng. Biotechnol. 2021, 9, 310. [Google Scholar] [CrossRef]
- Lv, Y. Application of Physical Stimulation in Stem Cell-based Tissue Engineering. Curr. Stem Cell Res. Ther. 2020, 15, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.; Keller, B.V.; Davis, M.L.; Dahners, L.E.; Weinhold, P. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon. Orthop. J. Sports Med. 2015, 3. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhu, Z.; Gao, S.; Zhang, C.; Li, C.; Zhou, K.; Hou, W.; Yu, H. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: Effect of microvibration and role of ERK1/2 activation. Eur. Cells Mater. 2011, 22, 12–25. [Google Scholar] [CrossRef]
- Beck, B.R.; Kent, K.; Holloway, L.; Marcus, R. Novel, high-frequency, low-strain mechanical loading for premenopausal women with low bone mass: Early findings. J. Bone Miner. Metab. 2006, 24, 505–507. [Google Scholar] [CrossRef]
- Ozcivici, E.; Luu, Y.K.; Rubin, C.T.; Judex, S. Low-Level Vibrations Retain Bone Marrow’s Osteogenic Potential and Augment Recovery of Trabecular Bone during Reambulation. PLoS ONE 2010, 5, e11178. [Google Scholar] [CrossRef] [Green Version]
- Alashram, A.R.; Padua, E.; Romagnoli, C.; Annino, G. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: A systematic review. NeuroRehabilitation 2019, 45, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashok, B.H.; Anantha, S.K.; Janarthan, K. Plantar temperature and vibration perception in patients with diabetes: A cross-sectional study. Biocybern. Biomed. Eng. 2020, 40, 1600–1610. [Google Scholar] [CrossRef]
- Jung, J.; Kim, M.-G.; Kang, Y.-J.; Min, K.; Han, K.-A.; Choi, H. Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2021, 18, 6046. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, A.; Hortobagyi, D.; Stachl, T.; Karbiener, M.; Grossmann, T.; Gerstenberger, C.; Gugatschka, M. Development and validation of a novel phonomimetic bioreactor. PLoS ONE 2019, 14, e0213788. [Google Scholar] [CrossRef]
- Halonen, H.; Ihalainen, T.; Hyväri, L.; Miettinen, S.; Hyttinen, J. Cell adhesion and culture medium dependent changes in the high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. J. Mech. Behav. Biomed. Mater. 2020, 101, 103419. [Google Scholar] [CrossRef] [PubMed]
- Saquetto, M.B.; Pereira, F.F.; Queiroz, R.S.; da Silva, C.M.; Conceição, C.S.; Neto, M.G. Effects of whole-body vibration on muscle strength, bone mineral content and density, and balance and body composition of children and adolescents with Down syndrome: A systematic review. Osteoporos. Int. 2018, 29, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Wano, N.; Sanguanrungsirikul, S.; Keelawat, S.; Somboonwong, J. The effects of whole-body vibration on wound healing in a mouse pressure ulcer model. Heliyon 2021, 7, e06893. [Google Scholar] [CrossRef]
- Roberts, R.E.; Bilgen, O.; Kineman, R.D.; Koh, T.J. Parameter-Dependency of Low-Intensity Vibration for Wound Healing in Diabetic Mice. Front. Bioeng. Biotechnol. 2021, 9, 654920. [Google Scholar] [CrossRef]
- Ward, K.; Alsop, C.; Caulton, J.; Rubin, C.; Adams, J.; Mughal, Z. Low Magnitude Mechanical Loading Is Osteogenic in Children with Disabling Conditions. J. Bone Miner. Res. 2004, 19, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Vahl, J.; von Witzleben, A.; Reiter, R.; Theodoraki, M.; Wigand, M.; Hoffmann, T.; Goldberg-Bockhorn, E. Infrasound a new weapon in cancer therapy? Explore 2021, 18, 366–370. [Google Scholar] [CrossRef]
- Sancho, P.; Gandarias, P.; González, R.; Gurumeta, A. Fisioterapia respiratoria con cinturones de vibración en el paciente crítico COVID-19 en posición de prono. Rev. Española Anestesiol. Reanim. 2020, 67, 481–482. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; Seixas, A.; Gloeckl, R.; Rittweger, J.; Rawer, R.; Taiar, R.; Van Der Zee, E.A.; Van Heuvelen, M.J.; Lacerda, A.C.; Sartorio, A.; et al. Potential Application of Whole Body Vibration Exercise for Improving the Clinical Conditions of COVID-19 Infected Individuals: A Narrative Review from the World Association of Vibration Exercise Experts (WAVex) Panel. Int. J. Environ. Res. Public Health 2020, 17, 3650. [Google Scholar] [CrossRef] [PubMed]
- Martorell, A.J.; Paulson, A.; Suk, H.-J.; Abdurrob, F.; Drummond, G.T.; Guan, W.; Young, J.Z.; Kim, D.N.-W.; Kritskiy, O.; Barker, S.J.; et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell 2019, 177, 256.e22–271.e22. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Lee, H.-B. The effects of whole body vibration exercise intervention on electroencephalogram activation and cognitive function in women with senile dementia. J. Exerc. Rehabil. 2018, 14, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, M.; Kiran, U.; Kumar, K.S.; Kopperi, H.; Gokulan, C.G.; Mohan, S.V.; Mishra, R.K. Comprehensive surveil- lance of SARS-CoV-2 spread using wastewater-based epidemiology studies. medRxiv 2020. [Google Scholar] [CrossRef]
- Bobola, M.; Chen, L.; Ezeokeke, C.; Olmstead, T.; Nguyen, C.; Sahota, A.; Williams, R.; Mourad, P. Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely and reduces Aβ load chronically, as demonstrated in vivo. Brain Stimul. 2020, 13, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer’s Disease: An Exploratory Pilot Study. J. Alzheimers Dis. 2016, 52, 651–660. [Google Scholar] [CrossRef]
- Tufatulin, G.; Koroleva, I.; Artyushkin, S.; Yanov, Y. The benefits of underwater vibrostimulation in the rehabilitation of children with impaired hearing. Int. J. Pediatr. Otorhinolaryngol. 2021, 149, 110855. [Google Scholar] [CrossRef]
- Casale, R.; Damiani, C.; Maestri, R.; Fundarò, C.; Chimento, P.; Foti, C. Localized 100 Hz vibration improves function and reduces upper limb spasticity: A double-blind controlled study. Eur. J. Phys. Rehabil. Med. 2014, 50, 495–504. [Google Scholar]
- Casale, R.; Fundar, C.; Symeionidou, Z.; Furnari, A.; Taiocchi, N.; Galandra, C. 100 Hz Localized vibration increases ipsilateral cerebellar areas activity during a motor task in healthy subjects: Three Cases Report. G Ital. Med. Lav. Ergon. 2019, 41, 255–259. [Google Scholar]
- Wong, R.M.Y.; Chow, S.K.H.; Tang, N.; Chung, Y.L.; Griffith, J.; Liu, W.H.; Ng, R.W.K.; Tso, C.Y.; Cheung, W.H. Vibration therapy as an intervention for enhancing trochanteric hip fracture healing in elderly patients: A randomized double-blinded, placebo-controlled clinical trial. Trials 2021, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Whitney, D.G.; Knight, C.A.; Miller, F.; Manal, K.; Kolm, P.; Modlesky, C.M. Site-Specific Transmission of a Floor-Based, High-Frequency, Low-Magnitude Vibration Stimulus in Children with Spastic Cerebral Palsy. Arch. Phys. Med. Rehabil. 2015, 97, 218–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustler, V.; Däggelmann, J.; Streckmann, F.; Bloch, W.; Baumann, F.T. Whole-body vibration in children with disabilities demonstrates therapeutic potentials for pediatric cancer populations: A systematic review. Support. Care Cancer 2019, 27, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.K.; Peddle-McIntyre, C.; Galvao, D.; Hunt, C.; Spry, N.; Newton, R.U. Whole Body Vibration Exposure on Markers of Bone Turnover, Body Composition, and Physical Functioning in Breast Cancer Patients Receiving Aromatase Inhibitor Therapy: A Randomized Controlled Trial. Integr. Cancer Ther. 2018, 17, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Chow, S.K.H.; Ho, C.Y.; Wong, H.W.; Chim, Y.N.; Wong, R.W.M.-Y.; Cheung, W.H. Efficacy of low-magnitude high-frequency vibration (LMHFV) on musculoskeletal health of participants on wheelchair: A study protocol for a single-blinded randomised controlled study. BMJ Open 2020, 10, e038578. [Google Scholar] [CrossRef]
- Adsuar, J.C.; Del Pozo-Cruz, B.; Parraca, J.; Olivares, P.R.; Gusi, N. Whole body vibration improves the single-leg stance static balance in women with fibromyalgia: A randomized controlled trial. J. Sports Med. Phys. Fit. 2012, 52, 85–91. [Google Scholar]
- Rubin, C.; Recker, R.; Cullen, D.; Ryaby, J.; McCabe, J.; McLeod, K. Prevention of Postmenopausal Bone Loss by a Low-Magnitude, High-Frequency Mechanical Stimuli: A Clinical Trial Assessing Compliance, Efficacy, and Safety. J. Bone Miner. Res. 2004, 19, 343–351. [Google Scholar] [CrossRef]
- Hanif, H.; Orooj, M.; Parveen, A. Effect of whole-body vibration after a resistance exercise bout on heart rate variability in hypertensive population. J. Complement. Integr. Med. 2021, in press. [Google Scholar] [CrossRef]
- Jiao, K.; Li, Z.; Chen, M.; Wang, C.; Qi, S. Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers. Int. Arch. Occup. Environ. Health 2004, 77, 205–212. [Google Scholar] [CrossRef]
- Färkkilä, M.; Pyykkö, I.; Heinonen, E. Vibration Stress and the Autonomic Nervous System. Kurume Med. J. 1990, 37, S53–S60. [Google Scholar] [CrossRef] [Green Version]
- Pacurari, M.; Waugh, S.; Krajnak, K. Acute Vibration Induces Peripheral Nerve Sensitization in a Rat Tail Model: Possible Role of Oxidative Stress and Inflammation. Neuroscience 2019, 398, 263–272. [Google Scholar] [CrossRef]
- Kákosy, T. 2 Vibration disease. Bailliere’s Clin. Rheumatol. 1989, 3, 25–50. [Google Scholar] [CrossRef]
- Goswami, I.; Redpath, S.; Langlois, R.; Green, J.; Lee, K.; Whyte, H. Whole-body vibration in neonatal transport: A review of current knowledge and future research challenges. Early Hum. Dev. 2020, 146, 105051. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, L.; Yeo, M.; McNally, D.; Crowe, J.A.; Henry, C.; Hill, S.; Mansfield, N.; Leslie, A.; Sharkey, D. Neonatal head and torso vibration exposure during inter-hospital transfer. Proc. Inst. Mech. Eng. H 2017, 231, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Ennis, W.J.; Lee, C.; Gellada, K.; Corbiere, T.; Koh, T.J. Advanced Technologies to Improve Wound Healing. Plast. Reconstr. Surg. 2016, 138, 94S–104S. [Google Scholar] [CrossRef]
- Chow, S.K.H.; Cui, C.; Cheng, K.Y.K.; Chim, Y.N.; Wang, J.; Wong, C.H.W.; Ng, K.W.; Wong, R.M.Y.; Cheung, W.H. Acute Inflammatory Response in Osteoporotic Fracture Healing Augmented with Mechanical Stimulation is Regulated In Vivo through the p38-MAPK Pathway. Int. J. Mol. Sci. 2021, 22, 8720. [Google Scholar] [CrossRef]
- Baskan, O.; Karadas, O.; Mese, G.; Ozcivici, E. Applicability of Low-intensity Vibrations as a Regulatory Factor on Stem and Progenitor Cell Populations. Curr. Stem Cell Res. Ther. 2020, 15, 391–399. [Google Scholar] [CrossRef]
- Robertson, S.; Campsie, P.; Childs, P.; Madsen, F.; Donnelly, H.; Henriquez, F.L.; Mackay, W.; Salmerón-Sánchez, M.; Tsimbouri, P.; Williams, C.; et al. Control of cell behaviour through nanovibrational stimulation: Nanokicking. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170290. [Google Scholar] [CrossRef] [Green Version]
- Hortobagyi, D.; Grossmann, T.; Tschernitz, M.; Grill, M.; Kirsch, A.; Gerstenberger, C.; Gugatschka, M. In vitro mechanical vibration down-regulates pro-inflammatory and pro-fibrotic signaling in human vocal fold fibroblasts. PLoS ONE 2020, 15, e0241901. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Franceschi, S.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods 2021, 10, 1768. [Google Scholar] [CrossRef]
- De Conto, V.; Cheung, V.; Maubon, G.; Souguir, Z.; Maubon, N.; Vandenhaute, E.; Bérézowski, V. In vitro differentiation modifies the neurotoxic response of SH-SY5Y cells. Toxicol. Vitr. 2021, 77, 105235. [Google Scholar] [CrossRef]
- De Medeiros, L.M.; De Bastiani, M.A.; Rico, E.P.; Schonhofen, P.; Pfaffenseller, B.; Wollenhaupt-Aguiar, B.; Grun, L.; Barbé-Tuana, F.; Zimmer, E.R.; Castro, M.A.A.; et al. Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer’s Disease Studies. Mol. Neurobiol. 2019, 56, 7355–7367. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.-T.; Lau, W.K.-W.; Yu, M.-S.; Lai, C.S.-W.; Yeung, S.-C.; So, K.-F.; Chang, R.C.-C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. NeuroToxicology 2009, 30, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.; Kumar, P.; van Vuuren, S.F.; Pillay, V.; Choonara, Y.E. Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. ACS Omega 2021, 6, 21368–21383. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, S.N.; Shi, H.H.; Hong, S.H.; Chen, T.; Marquez-Chin, M.; Iorio-Morin, C.; Kalia, S.K.; Popovic, M.R.; Naguib, H.E.; Morshead, C.M. Novel Electrode Designs for Neurostimulation in Regenerative Medicine: Activation of Stem Cells. Bioelectricity 2020, 2, 348–361. [Google Scholar] [CrossRef]
- Silva, T.P.; Sousa-Luís, R.; Fernandes, T.G.; Bekman, E.P.; Rodrigues, C.A.V.; Vaz, S.H.; Moreira, L.M.; Hashimura, Y.; Jung, S.; Lee, B.; et al. Transcriptome profiling of human pluripotent stem cell-derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnol. Bioeng. 2021, 118, 2781–2803. [Google Scholar] [CrossRef] [PubMed]
- Wiatrak, B.; Balon, K. Protective Activity of Aβ on Cell Cultures (PC12 and THP-1 after Differentiation) Preincubated with Lipopolysaccharide (LPS). Mol. Neurobiol. 2021, 58, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Wiatrak, B.; Kubis-Kubiak, A.; Piwowar, A.; Barg, E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 2020, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, E.; Condello, S.; Currò, M.; Ferlazzo, N.; Vecchio, M.; Caccamo, D.; Magazù, S.; Ientile, R. 50 Hz Electromagnetic Field Produced Changes in FTIR Spectroscopy Associated with Mitochondrial Transmembrane Potential Reduction in Neuronal-Like SH-SY5Y Cells. Oxidative Med. Cell. Longev. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Consales, C.; Butera, A.; Merla, C.; Pasquali, E.; Lopresto, V.; Pinto, R.; Pierdomenico, M.; Mancuso, M.; Marino, C.; Benassi, B. Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures. Mol. Neurobiol. 2021, 58, 1634–1649. [Google Scholar] [CrossRef]
- Genchi, G.G.; Cialdai, F.; Monici, M.; Mazzolai, B.; Mattoli, V.; Ciofani, G. Hypergravity Stimulation Enhances PC12 Neuron-Like Cell Differentiation. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Prsa, M.; Morandell, K.; Cuenu, G.; Huber, D. Feature-selective encoding of substrate vibrations in the forelimb somatosensory cortex. Nature 2019, 567, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Blackman, C.F.; Benane, S.G.; House, D.E. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells. Bioelectromagnetics 1995, 16, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Shipley, M.M.; Mangold, C.A.; Szpara, M.L. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 2016, 108. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, Y.; Yang, Y.; Wang, M.; Yu, H. Low-Magnitude, High-Frequency Vibration Promotes Osteogenic Differentiation via Intensifying miRNA-335-5p Expression. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Kovalevich, J.; Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [CrossRef] [Green Version]
- López-Carballo, G.; Moreno, L.; Masiá, S.; Pérez, P.; Barettino, D. Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Retinoic Acid Is Required for Neural Differentiation of SH-SY5Y Human Neuroblastoma Cells. J. Biol. Chem. 2002, 277, 25297–25304. [Google Scholar] [CrossRef] [Green Version]
- Itano, Y.; Ito, A.; Uehara, T.; Nomura, Y. Regulation of Bcl-2 protein expression in human neuroblastoma SH-SY5Y cells: Pos-itive and negative effects of protein kinases C and A, respectively. J. Neurochem. 1996, 67, 131–137. [Google Scholar] [CrossRef]
- Lopes, F.M.; Schroder, R.; da Frota, M.L., Jr.; Zanotto-Filho, A.; Muller, C.B.; Pires, A.S.; Meurer, R.T.; Colpo, G.D.; Gelain, D.P.; Kapczinski, F.; et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res. 2010, 1337, 85–94. [Google Scholar] [CrossRef]
- Edsjö, A.; Holmquist, L.; Påhlman, S. Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin. Cancer Biol. 2007, 17, 248–256. [Google Scholar] [CrossRef]
- Marycz, K.; Lewandowski, D.; Tomaszewski, K.A.; Henry, B.M.; Golec, E.B.; Marędziak, M. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ 2016, 4, e1637. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.D.; Radu, C.M.; Vitiello, G.; Romano, P.; Polcari, A.; Iliceto, S.; Simioni, P.; Tona, F. Sounds Stimulation on In Vitro HL1 Cells: A Pilot Study and a Theoretical Physical Model. Int. J. Mol. Sci. 2020, 22, 156. [Google Scholar] [CrossRef]
- Marchesi, N.; Barbieri, A.; Fahmideh, F.; Govoni, S.; Ghidoni, A.; Parati, G.; Vanoli, E.; Pascale, A.; Calvillo, L. Use of dual-flow bioreactor to develop a simplified model of nervous-cardiovascular systems crosstalk: A preliminary assessment. PLoS ONE 2020, 15, e0242627. [Google Scholar] [CrossRef] [PubMed]
- Steppe, L.; Liedert, A.; Ignatius, A.; Haffner-Luntzer, M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 595139. [Google Scholar] [CrossRef]
- Grossemy, S.; Chan, P.P.Y.; Doran, P.M. Enhanced Neural Differentiation Using Simultaneous Application of 3D Scaffold Culture, Fluid Flow, and Electrical Stimulation in Bioreactors. Adv. Biol. 2021, 5, 2000136. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.; Sotiropoulos, I.; Carvalho, O.; Sousa, N.; Silva, F.S. Multi-mechanical waves against Alzheimer’s disease pathology: A systematic review. Transl. Neurodegener. 2021, 10, 36. [Google Scholar] [CrossRef]
- D’Haese, P.-F.; Ranjan, M.; Song, A.; Haut, M.W.; Carpenter, J.; Dieb, G.; Najib, U.; Wang, P.; Mehta, R.I.; Chazen, J.L.; et al. β-Amyloid Plaque Reduction in the Hippocampus After Focused Ultrasound-Induced Blood–Brain Barrier Opening in Alzheimer’s Disease. Front. Hum. Neurosci. 2020, 14, 593672. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-H.; Lin, Y.-T.; Chung, Y.-H.; Lin, K.-J.; Yang, L.-Y.; Yen, T.-C.; Liu, H.-L. Focused Ultrasound-Induced Blood-Brain Barrier Opening Enhances GSK-3 Inhibitor Delivery for Amyloid-Beta Plaque Reduction. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Karakatsani, M.E.; Kugelman, T.; Ji, R.; Murillo, M.; Wang, S.; Niimi, Y.; Small, S.A.; Duff, K.; Konofagou, E.E. Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from the rTg4510 Mouse Model. Theranostics 2019, 9, 5396–5411. [Google Scholar] [CrossRef]
- Pandit, R.; Leinenga, G.; Götz, J. Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and improves behavioral functions. Theranostics 2019, 9, 3754–3767. [Google Scholar] [CrossRef]
- Eguchi, K.; Shindo, T.; Ito, K.; Ogata, T.; Kurosawa, R.; Kagaya, Y.; Monma, Y.; Ichijo, S.; Kasukabe, S.; Miyata, S.; et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia—Crucial roles of endothelial nitric oxide synthase. Brain Stimul. 2018, 11, 959–973. [Google Scholar] [CrossRef] [Green Version]
- Burgess, A.; Dubey, S.; Yeung, S.; Hough, O.; Eterman, N.; Aubert, I.; Hynynen, K. Alzheimer Disease in a Mouse Model: MR Imaging–guided Focused Ultrasound Targeted to the Hippocampus Opens the Blood-Brain Barrier and Improves Pathologic Abnormalities and Behavior. Radiology 2014, 273, 736–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beisteiner, R.; Matt, E.; Fan, C.; Baldysiak, H.; Schönfeld, M.; Novak, T.P.; Amini, A.; Aslan, T.; Reinecke, R.; Lehrner, J.; et al. Transcranial Pulse Stimulation with Ultrasound in Alzheimer’s Disease—A New Navigated Focal Brain Therapy. Adv. Sci. 2019, 7, 1902583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Vibrations | Clinical Implication | Participants |
---|---|---|
100–400 Hz underwater vibrations | Vibrotimulation—produced hearing-like sensations in the ear [28] | adults and children with congenital hearing loss |
100 Hz localized vibration | motor recovery in neurorehabilitation [29] | healthy men |
100 Hz vibration | flexors spasticity reduction [30] | hemiplegic patients affected by upper limb spasticity |
40 Hz 12 weeks of vibration therapy | Parkinson’s disease [2] | Adults with Parkinson’s disease |
40 Hz auditory stimulation | Alzheimer’s disease [23] | Alzheimer’s disease mouse models |
20-Hz to 40-Hz vertical vibration | increased brain network activity [24] | women with senile dementia |
40 Hz acoustic stimulation | Alzheimer’s disease [25] | Alzheimer’s disease mouse models |
40 Hz transcranial ultrasound | Alzheimer’s disease [26] | Alzheimer’s disease mouse models |
40 Hz sound stimulation | Alzheimer’s disease [27] | persons with mild and moderate Alzheimer’s disease |
35 Hz LMHFV vibration therapy | hip fracture healing [31] | Elderly males or females aged 65 years or older with unilateral trochanteric hip fractures |
33 Hz vibration platform therapy | spastic cerebral palsy [32] | Children with physical disabilities |
90 Hz low magnitude vibrations | treatment for bone fragility in children [22] | children with disabling conditions |
12–30 Hz | optimal functional conditions, which may allow the children to be physically active [33] | pediatric cancer patients and survivors |
27–32 Hz vibration platform therapy | After vibration training, there was no significant difference between groups for bone resorption [34] | women with breast cancer |
35 Hz vibration platform therapy | Enhancing bone and muscle quality [35] | disabled older wheelchair users |
12,5 Hz whole-body vibration therapy | improves static balance in patients with fibromyalgia [36] | women with fibromyalgia |
30 Hz vertical vibrations | prevention of postmenopausal bone loss [37] | women, 3–8 years past the menopause |
whole-body vibration (WBV) | Improved blood pressure in the hypertensive population [38] | hypertensive males and females |
Vibration frequencies of 1–8 Hz | Increase LF/HF (the relationship between sympathetic and parasympathetic nerve activities), affected sympathetic activity [39] | healthy young men |
8 Hz vibration belt | respiratory physiotherapy with vibration belts [21] | critically ill patients with COVID-19 infection with mechanical ventilation |
15 Hz local vibration | plantar blood flow improvement in diabetic foot ulcers [22] | diabetic and healthy adults |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosman-Dziewiszek, P.; Wiatrak, B.; Dziewiszek, W.; Jawień, P.; Mydlikowski, R.; Bolejko, R.; Szandruk-Bender, M.; Karuga-Kuźniewska, E.; Szeląg, A. Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation—A Preliminary Study. Molecules 2022, 27, 3337. https://doi.org/10.3390/molecules27103337
Grosman-Dziewiszek P, Wiatrak B, Dziewiszek W, Jawień P, Mydlikowski R, Bolejko R, Szandruk-Bender M, Karuga-Kuźniewska E, Szeląg A. Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation—A Preliminary Study. Molecules. 2022; 27(10):3337. https://doi.org/10.3390/molecules27103337
Chicago/Turabian StyleGrosman-Dziewiszek, Patrycja, Benita Wiatrak, Wojciech Dziewiszek, Paulina Jawień, Remigiusz Mydlikowski, Romuald Bolejko, Marta Szandruk-Bender, Ewa Karuga-Kuźniewska, and Adam Szeląg. 2022. "Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation—A Preliminary Study" Molecules 27, no. 10: 3337. https://doi.org/10.3390/molecules27103337
APA StyleGrosman-Dziewiszek, P., Wiatrak, B., Dziewiszek, W., Jawień, P., Mydlikowski, R., Bolejko, R., Szandruk-Bender, M., Karuga-Kuźniewska, E., & Szeląg, A. (2022). Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation—A Preliminary Study. Molecules, 27(10), 3337. https://doi.org/10.3390/molecules27103337