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Abstract: A series of coinage metal complexes asymmetrically substituted 2,5-diaryl phosphole
ligands is reported. Structure, identity, and purity of all obtained complexes were corroborated
with state-of-the-art techniques (multinuclear NMR, mass spectrometry, elemental analysis, X-ray
diffraction) in solution and solid state. All complexes obtained feature luminescence in solution as
well as in the solid state. Additionally, DOSY-MW NMR estimation experiments were performed to
achieve information about the aggregation behavior of the complexes in solution allowing a direct
comparison with their structures observed in the solid state.
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1. Introduction

Within the diverse group of organophosphorus compounds phospholes play a promi-
nent role [1,2]. Owing to their low HOMO-LUMO gap these five membered heterocycles
show pronounced luminescence in form of fluorescence making them excellent materials
for a wide range of applications [3–9]. Recently, we explored the usage of phospholes as
guest component in nanoimprint lithography and for the preparation of phosphole-silica
hybrids [10,11].

Depending on their substitution pattern, the absorption and emission maxima can
be tuned to lower or higher wavelengths and the quantum yield for emissive processes
can be controlled to a certain extent [12–16]. In particular, asymmetrically substituted
phospholes allow an even more precise adaption of the optical properties [10,17]. Moreover,
these compounds have a P stereogenic center, which opens further opportunities [18–20].
Straightforward access to asymmetrically substituted phospholes is given via a method
originally reported by Märkl et al. [21], for which an improved protocol and mechanistic
insights were developed by us recently [13,15,17]. Since the barrier for planar inversion at
phosphorus is low, [18] conservation of the stereochemical integrity at the P-stereogenic
center is possible by employing the lone pair at phosphorus for derivatization for instance
via complexation. In this publication we explore the coordination behavior of an unsym-
metrically substituted phosphole with a series of diamagnetic coinage metal centers aiming
at P-chiral complexes.

2. Results and Discussion

The previously reported β-silyl phosphole 1 has been chosen as an entry for our
investigation as it is available in reasonable quantities featuring attractive luminescence
properties [10]. Besides its unsymmetric substitution pattern, potential involvement of the
thienyl unit as secondary donor site may allow for a variety of coordination motifs in metal
complexes of this phosphole.

Removal of the trimethylsilyl (TMS) group furnishes the corresponding β–H phosp-
hole 2 featuring higher quantum yield and unperturbed coplanarity of the adjacent rings
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with the central phosphole unit [13]. In order to improve the desilylation reaction reported
to proceed with KOTMS, we employed tetra-n-butylammonium fluoride (TBAF) which is
also a well-known desilylation reagent [22,23]. This adaption resulted in a more selective
reaction behavior with higher yields. Scheme 1 visualizes the corresponding reaction.
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the silver complex 4 is shifted by almost 7 ppm to lower field. The most obvious change 
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comparable with other phosphorus containing coinage metal complexes [24–28]. 
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silver (107Ag and 109Ag) both have nuclear spin of ½, which for single coordination would 
ensue a multiplicity of a doublet [29]. 

 

Scheme 1. Desilylation of the literature known phosphole 1 with subsequent complexation of the
phosphorus center by different coinage metal salts. The α- and β-positions indicate the proximity
referring to the phosphorus atom within the phosphole ring. They have been denoted on one side of
the ring as an example, whereas a more detailed outline of the ring numbering scheme is illustrated
in the supporting information (Scheme S1).

With compound 2 in hand, complexation reactions with a series of diamagnetic coinage
metal salts were investigated. To this end phosphole 2 was reacted with [Cu(NCMe)4]BF4,
AgBF4 and Au(tht)Cl (tht: tetrahydrothiophene) in solution at room temperature. Recorded
31P–NMR spectra show a full conversion for all complexation reactions. The 31P NMR
spectrum of copper complex 3 shows a broad resonance at 5.3 ppm (∆v1/2 = 270 Hz), which
differs only marginally from the starting material. The signal for the silver complex 4 is
shifted by almost 7 ppm to lower field. The most obvious change was found for gold
complex 5, which shows a resonance at 32.5 ppm. These changes are comparable with
other phosphorus containing coinage metal complexes [24–28].

For complex 4, the reaction was carried out in three different solvents (dichloromethane
(DCM), acetonitrile (MeCN), and tetrahydrofuran (THF)) affecting line shape and coordina-
tion shift (Figure 1). All NMR spectra show a signal in the range around 12 ppm. In DCM
two signals are recognizable, while for reaction in the other two solvents only one singlet
is visible. Possibly the two signals for the reaction in DCM could arise from two different
species or coupling of the observed 31P nucleus with the isotopes of silver (107Ag and 109Ag)
both have nuclear spin of 1

2 , which for single coordination would ensue a multiplicity of a
doublet [29].
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Deconvolution analysis gives a ratio of 46:54 for the two signals, corroborating this
latter explanation, since the ratio of the two isotopes is about 48:52.

Since the resonances in DCM are not baseline resolved, no exact determination of the
full width at half maximum is possible. The other two signals show a full width at half
maximum of ∆v1/2 = 231 Hz and ∆v1/2 = 293 Hz. Integration of the corresponding 1H
NMR spectra revealed that solvent used for the reaction is present in the complex (one
equivalent of acetonitrile, vs. half an equivalent of THF) indicating that in these cases there
is a coordination of the respective solvents to the silver atom.

2.1. Characterization in the Solid State

All complexes were also obtained as single crystals which were analyzed by X-ray
structure analysis. Figure 2 shows the molecular structure of copper complex 3. In complex
3, two of the acetonitrile units have been removed from the coordination sphere of the cop-
per atom and were replaced by phosphole ligands, which adopt homochiral configurations
at the P-stereogenic centers. The copper atom is surrounded in distorted pseudo tetrahedral
fashion which is a common coordination motif in the literature [27] contrasting motifs
with Cu—Cu interaction which have also been observed with phosphole ligands [28]. The
copper-phosphorus distance in 3 is with 2.263(1) Å in the usual range for copper phos-
phane complexes [30]. The angles between the phosphole ring and the substituents at
2- and 5-position are (2.9(2)◦ (phenyl) and 13.1(2)◦ (thienyl)). It is also evident that the
sulfur atom of the thienyl ring does not coordinate to the copper center. According to the
HSAB principle, however, this would be quite conceivable, as interactions between copper
and sulfur occur frequently and even when unintended (e.g., catalyst poisoning) [31]. To
gather additional information about the structure of complex 3 in CD2Cl2 solution, a 1H
DOSY–MW NMR estimation experiment was performed (Supplementary Materials, Table
S1, Figure S10). The results indicate that in contrast to the composition in the solid state
just one phosphole ligand is binding to the copper center in solution. So, in essence, the
structure of complex 3 differs in solutions from that in the solid state.
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Figure 2. Ortep plots of the molecular structure of 3 in the solid state with ellipsoids drawn at the
30% probability level. Labels for some selected atoms, disorders and hydrogen atoms are omitted
for clarity. Important bond lengths and angles: (C4)–(C9) 1.448(7) Å, (C1)–(C5) 1.464(7) Å, (C1)–(C2)
1.346(7) Å, (C2)–(C3) 1.440(7) Å, (C3)–(C4) 1.354(7) Å, (P1)–(C4) 1.816(5) Å, (P1)–(C1) 1.812(5) Å,
(P1)–(C15) 1.824(5) Å, (P1)–(Cu1) 2.263(1) Å, (Cu1)–(N1) 2.001(7) Å; (C4)–(P1)–(C15) 106.4(2)◦, (C1)–
(P1)–(C15) 107.2(2)◦, (C1)–(P1)–(C4) 91.8(2)◦, (Cu1)–(P1)–(C15) 120.4(2)◦, (P1)–(Cu1)–(N1) 107.5(2)◦,
(P1)–(Cu1)–(P1) 112.4(7)◦, (N1)–(Cu1)–(N1) 99.5(4)◦.
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In contrast to copper complex 3, its silver analog 4, shows a coordination of the
tetrafluoroborate anion to the silver center. The distance is 2.388(3) Å ((Ag1)–(F1)) and
within the sum of the van der Waals radii [32]. Furthermore, there is another contact
(Ag1)–(F4) with 2.607(3) Å. This results in a polymeric structure in the solid, which is
shown in Figure 3. Within the underlying repeating unit, the P-stereogenic centers adopt
configurations of opposite chirality. In complex 4, a silver cation is coordinated by two
tetrafluoroborate anions, a phosphorus atom of a phosphole unit ((P1)–(Ag1) 2.373(1) Å)
and the sulfur atom (S1A) from a thienyl ring of another phosphole molecule ((Ag1)–(S1A)
2.581(7) Å). The silver center is surrounded in distorted pseudo tetrahedral fashion in this
coordination polymer. The angles range from 79.4 to 140.0◦, deviating significantly from
those of an ideal tetrahedron. The boron-fluorine distances are between 1.371 and 1.398 Å.
The larger distances are observed for the coordinating fluorine atoms (F1) and (F4).
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for clarity. Important bond lengths and angles: (C4)–(C9) 1.462(6) Å, (C1)–(C5) 1.458(7) Å, (C1)-(C2)
1.348(8) Å, (C2)–(C3) 1.445(7) Å, (C3)–(C4) 1.350(8) Å, (P1)–(C4) 1.808(5) Å, (P1)–(C1) 1.806(6) Å,
(P1)–(C15) 1.817(5) Å, (P1)–(Ag1) 2.373(1) Å, (Ag1)–(F1) 2.388(3) Å, (F1)–(B1) 1.398(7) Å, (F2)–(B1)
1.371(8) Å, (F3)–(B1) 1.372(7) Å, (F4)–(B1) 1.382(7) Å, (Ag1)–(F4) 2.607(3) Å, (Ag1)–(S1A) 2.581(7)
Å; (C4)–(P1)–(C15) 107.1(2)◦, (C1)–(P1)–(C15) 107.5(2)◦, (C1)–(P1)–(C4) 92.1(2)◦, (Ag1)–(P1)–(C15)
116.4(2)◦, (P1)–(Ag1)–(F1) 140.0(1)◦, (F1)–(Ag1)–(S1A) 82.8(2)◦, (F1)–(Ag1)–(F4) 79.4(1)◦.

In analogy to complex 3, a 1H DOSY–MW NMR estimation experiment was also
carried out (Supplementary Materials, Table S2, Figure S11). It shows that similar to 3 also
in 4 only one phosphole ligand is binding to the silver cation in CDCl3 solution. The gold
complex 5 shows a linear coordination of the gold atom to the phosphorus center (Figure 4).

The Au(1)–P(1) distance is 2.196(2) Å and comparable to related literature values [28,33].
The shortest intermolecular distance between two gold(I) ions is 4.259(1) Å, excluding the
presence of aurophilic interactions in 5. The adjacent aromatic rings in α-position adopt a
nearly coplanar arrangement (0.6(4)◦ (phenyl) and 4.4(4)◦(thienyl)) similar to noncoordi-
nated β–H phospholes [13,28]. The performed DOSY–MW NMR estimation experiment
shows that in this case the composition in the solid state and in solution are similar
(Supplementary Materials, Table S3, Figure S12). So, in both states the metal center is
coordinated by one phosphole ligand containing a center of chirality at phosphorus.
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2.2. Luminescence Properties

To explore their luminescence properties the absorption and emission maxima in
solution (DCM) and solid state have been investigated (Figure 5) for phosphole complexes
3–5 and Table 1 summarizes the corresponding data.

Phosphole 2 shows an absorption maximum at 395 nm and an emission maximum
at 487 nm in solution. All complexes feature a red-shifted emission and absorption with
lower quantum yield referring to the uncoordinated phosphole. The highest quantum
yield was found for complex 4 which is still 11% lower than the quantum yield of the free
phosphole ligand. The attenuation coefficients are comparable to those obtained for other
phospholes [12,13].
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Figure 5. Recorded absorption and emission spectra in solution and solid state. For the emission
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ment in solution (DCM) λEx [nm] = 414 (3), 402 (4), 417 (5); (b) in solid state λEx [nm] = 451 (3), 427
(4), 450 (5).
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Table 1. Photophysical properties of the investigated compounds in solution (DCM, 10−5 M) and
solid state.

DCM Solid

Compound λabs [nm] λEm [nm] φ [%] εmax·104

[l·cm−1·mol−1]
λabs [nm] λEm [nm] φ [%]

2 395 [10] 487 [10] 33.8 [10] - 446 523 44.5
3 411 497 6.2 2.84 451 536 4.7
4 402 496 21.5 3.69 428 496 0.7
5 418 519 7.7 2.62 450 552 22.8

(λabs = absorption wavelength, λEm = emission wavelength, εmax = molar attenuation coefficient, φ = quantum
yield).

In the solid state the situation is more complex. Here no clear tendencies in absorption
and emission maxima are observable. But compared to copper and silver complexes
of phospholanes, the saturated derivatives of phospholes, the emissions are all strongly
blue-shifted [34,35]. Nevertheless, the quantum yields are all lower than those of the
phosphole used for the complexation reaction. Polymeric silver complex 4 shows a broader
absorption curve than compounds 3 and 5. The related gold complex of the benchmark
triphenylphosphole shows similar emission properties and quantum yields. Unfortunately,
the absorption spectrum in solid state was not reported [36].

3. Materials and Methods

All reactions were carried out by means of standard Schlenk or glovebox techniques
under inert gas atmosphere (argon). Solvents were dried over Na/K alloy before use and
were freshly distilled under inert gas.

The used phosphole 1 [10] as well the corresponding educts phenylphosphane (PhPH2)
and the unsymmetrically substituted diyne [37] were synthesized as described in the literature.

Deuterated solvents for NMR spectroscopy were dried and stored over molecular
sieves. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), ABCR
(Karlsruhe, Germany) or TCI (Tokyo, Japan) and used without further purification.

For purification via column chromatography a puriFlash XS 520 plus (Interchim,
Montluçon, France) was used. The used cartridges were filled with spheric silica gel
(particle size: 25 µm).

1H, 13C, 31P, and 29Si NMR data were recorded on Varian VNMRS-500 MHz or MR-400
MHz spectrometers (CA, USA) at 25 ◦C. Chemical shifts were referenced to residual protic
impurities in the solvent (1H) or the deuterated solvent (13C) and reported relative to
external SiMe4 (1H, 13C, 29Si), H3PO4 (31P).

Solution-state structure elucidation of complexes 3–5 was performed via a 1H–DOSY
external calibration curve (ECC) molecular weight (MW) estimation [38–41] (see Supple-
mentary Materials, Tables S1–S3 and S10–S12). Previous studies showed that for most
organometallic compounds the dissipated spheres and ellipsoids (DSE) calibration curve is
most suitable for an accurate estimation [42]. DOSY–NMR experiments were recorded on a
Varian 400 MHz spectrometer. Sample spinning was deactivated during the measurements,
and the temperature was set and controlled at 298 K. All DOSY experiments were per-
formed using the Dbppste pulse sequence [43]. Molecular weight estimation was carried
out with the software (v1.3) provided by Bachmann [40].

APCI mass determinations were performed on a Finnigan LCQ Deca (ThermoQuest,
San Jose, CA, USA). Mass calibration was carried out immediately before sample measure-
ment on sodium formate clusters or by the ESI-Tune Mix standard (Agilent, Santa Clara,
CA, USA).

Elemental analyses were performed with a HEKAtech Euro EA CHNS elemental
analyzer. Samples were prepared in a Sn cup and analyzed with added V2O5.

Absorption spectra were recorded using a Shimadzu UV−1900 spectrometer in solu-
tion. Emission spectra as well as luminescence quantum yields (absolute method) were
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measured with the Hamamatsu C11347 system in solution and solid state. For the refine-
ment of the data OriginPro was used. Crystallographic measurements were carried out on
a Stoe IPDS2 diffractometer with a STOE image plate detector and a Mo-Kα (λ = 0.71073 Å)
monochromator or a Stoe StadiVari diffractometer with a Pilatus 200K image plate detector
and Cu-Kα (λ = 1.54186 Å) radiation. Direct methods were used to solve the measurements
and refined by “least-square” cycles (SHELXL−2017) [44]. All nonhydrogen atoms were
anisotropically refined without restriction. The evaluation of the data sets and the graphical
preparation of the structures were carried out using Olex2 [45] and Mercury [46]. Details
of the structure determinations and refinement are summarized in Table S4 in Supple-
mentary Materials. The CCDC depositions 2167961-2167963 contain the supplementary
crystallographic data for this paper, which can be obtained free of charge via emailing
data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data
Centre at 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

3.1. Synthesis of Phosphole 2

Phosphole 1 (781 mg, 2.0 mmol, 1.0 equiv) was dissolved in THF (10 mL) and a solution
of TBAF in THF (1 M, 2.0 mL, 2.0 mmol, 1.0 equiv) was added. The reaction mixture was
stirred for 16 h at room temperature. Then, the solvent was removed under reduced
pressure and the crude product was purified by flash chromatography (pentane:DCM,
80:20). Phosphole 2 was obtained as yellow, luminescent solid. Yield: 82% (521 mg).

3.2. Synthesis of Copper Complex 3

Phosphole 2 (32 mg, 0.10 mmol, 1.0 equiv) was dissolved in DCM (3 mL) and added to
a solution of [Cu(MeCN)4]BF4 (16 mg, 0.05 mmol, 0.5 equiv) in DCM (3 mL). The reaction
mixture was stirred at room temperature for 90 min. After that the solvent was removed
under reduced pressure and the remaining yellow solid was washed with pentane. The
product was obtained as yellow, luminescent solid. Yield: 70% (32 mg).

1H NMR (399.87 MHz, CD2Cl2, δ) 7.54–7.09 (m, 12 H, 12 × CHAr), 6.94–6.89 (m, 1 H,
CHAr), 6.76–6.74 (m, 2 H, 2 × CHAr), 2.00 (s, 3 H, NCCH3). 13C{1H} NMR (100.56 MHz,
CD2Cl2, δ) 144.3 (d, J(13C–31P) = 31.8 Hz, CAr), 140.2 (d, J(13C–31P) = 32.7 Hz, CAr), 138.6 (d,
J(13C–31P) = 18.9 Hz, CAr), 134.9 (d, J(13C–31P) = 10.6 Hz, CAr), 134.4 (d, J(13C–31P) = 14.2 Hz,
CAr), 134.0 (d, J(13C–31P) = 15.1 Hz, CAr), 133.5 (d, J(13C–31P) = 10.6 Hz, CAr), 132.2 (s, CAr),
130.1 (d, J(13C–31P) = 9.4 Hz, CAr), 129.2 (d, J(13C–31P) = 1.9 Hz, CAr), 128.7 (s, CAr), 128.4 (d,
J(13C–31P) = 1.8 Hz, CAr), 127.2 (d, J(13C–31P) = 30.8 Hz, CAr), 126.6 (d, J(13C–31P) = 5.9 Hz,
CAr), 126.2 (d, J(13C–31P) = 1.8 Hz, CAr), 126.1 (d, J(13C–31P) = 4.0 Hz, CAr), 118.5 (s, NCCH3),
2.6 (d, J(13C–31P) = 1.8 Hz, NCCH3). 31P{1H} NMR (202.30 MHz, CD2Cl2, δ) 4.7 (s).

Elemental Analysis (%) calcd for C44H36BCuF4N2P2S2: C 60.80, H 4.17, N 3.22, found:
C 60.46, H 4.19, N 3.13. MS (APCI–HR) m/z: 380.99226 [2 + Cu]+, calcd: 380.99226.

3.3. Synthesis of Silver Complex 4

Phosphole 2 (32 mg, 0.10 mmol, 1.0 equiv) was dissolved in MeCN (3 mL) and added
to a solution of AgBF4 (10 mg, 0.05 mmol, 0.5 equiv) in MeCN (3 mL). The reaction mixture
was stirred at room temperature for 90 min. After that the solvent was removed under
reduced pressure and the remaining yellow solid was washed with pentane. The product
was obtained as yellow, luminescent solid. Yield: 84% (36 mg).

1H NMR (399.87 MHz, CD2Cl2, δ) 7.59–7.14 (m, 13 H, 13 × CHAr), 7.02–7.01 (m, 1 H,
CHAr), 6.87–6.84 (m, 1 H, CHAr), 2.06 (s, 3 H, NCCH3). 13C{1H} NMR (100.56 MHz, CD2Cl2,
δ) 144.3 (d, J(13C–31P) = 34.3 Hz, CAr), 138.9 (d, J(13C–31P) = 34.8 Hz, CAr), 137.7 (d, J(13C–
31P) = 19.1 Hz, CAr), 135.9 (d, J(13C–31P) = 10.7 Hz, CAr), 134.4 (d, J(13C–31P) = 15.3 Hz,
CAr), 134.2 (d, J(13C–31P) = 11.8 Hz, CAr), 133.6 (d, J(13C–31P) = 14.1 Hz, CAr), 133.0 (s,
CAr), 130.4 (d, J(13C–31P) = 10.4 Hz, CAr), 129.7 (s, CAr), 129.3 (s, CAr), 129.0 (s, CAr), 126.9
(s, CAr), 126.7 (d, J(13C–31P) = 6.9 Hz, CAr), 126.4 (d, J(13C–31P) = 3.4 Hz, CAr), 124.7 (d,
J(13C–31P) = 31.2 Hz, CAr). 31P{1H} NMR (202.30 MHz, CD2Cl2, δ) 12.6 (s).
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Elemental Analysis (%) calcd for C40H30AgBF4P2S2: C 57.79, H 3.64 found: C 57.86, H
3.76. MS (APCI–HR) m/z: 424.96775 [2 + Ag]+, calcd: 424.96775.

3.4. Synthesis of Gold Complex 5

Phosphole 2 (64 mg, 0.20 mmol, 1 equiv) was dissolved in THF (3 mL) and added to a
solution of Au(tht)Cl4 (65 mg, 0.20 mmol, 1 equiv) in THF (3 mL). The reaction mixture
was stirred at room temperature for 60 min. After that the solvent and tetrahydrothiophene
were removed under reduced pressure. The product was obtained as yellow, luminescent
solid. Yield: 85% (94 mg).

1H NMR (399.87 MHz, CDCl3, δ) 7.78–7.74 (m, 2 H, 2 × CHAr), 7.63–7.60 (m, 2 H,
2 × CHAr), 7.53–7.10 (m, 10 H, 10 × CHAr), 6.94–6.91 (m, 1 H, CHAr). 13C{1H} NMR
(100.56 MHz, CDCl3, δ) 142.7 (s, CAr), 142.1 (s, CAr), 139.1 (s, CAr), 138.5 (s, CAr), 137.5 (d,
J(13C-31P) = 16.7 Hz, CAr), 136.0 (d, J(13C–31P) = 14.5 Hz, CAr), 135.2 (d, J(13C–31P) = 16.7 Hz,
CAr), 135.0 (d, J(13C–31P) = 2.8 Hz, CAr), 134.1 (d, J(13C–31P) = 14.2 Hz, CAr), 131.8 (d,
J(13C–31P) = 12.6 Hz, CAr), 131.1 (s, CAr), 130.3 (s, CAr), 129.1 (d, J(13C–31P) = 5.9 Hz, CAr),
128.9 (s, CAr), 128.5 (d, J(13C–31P) = 8.0 Hz, CAr), 126.1 (d, J(13C–31P) = 3.3 Hz, CAr). 31P{1H}
NMR (202.30 MHz, CDCl3, δ) 32.3 (s).

Elemental Analysis (%) calcd for C20H15AuClPS: C 43.61, H 2.75 found: C 43.71, H
2.89. MS (APCI–HR) m/z: 515.02921 [5 – Cl]+, calcd: 515.02921.

4. Conclusions

In summary, we have synthesized the known asymmetrically substituted phosphole
2 via an improved method and explored its coordination behavior towards a series of
diamagnetic coinage metal fragments. As a result, three different coinage metal complexes
(3–5) were obtained and characterized in solution and solid state. While Ag complex 4 has
a polymeric solid state structure, its Au analog 5 is monomeric without any aurophilic in-
teractions. The corresponding Cu complex 3 is monomeric as well featuring two phosphole
ligands per metal. The complexes are soluble in dichloromethane with coordination shifts
of the 31P NMR resonance increasing with nuclear charge of the coinage metal. Using 1H
DOSY–MW NMR experiments we estimated the aggregation of all compounds in solution.
As a result, the complexes are monomeric with one phosphole ligand per metal ion in
solution in contrast to the corresponding solid state structures featuring monomeric (Au),
polymeric (Ag) or twofold (Cu) coordination behavior. Additionally, the luminescence
properties of all complexes were investigated in solution and solid state. The results
show luminescence for all compounds but with lower quantum yields for the complexes
compared with the free ligand.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27113368/s1, NMR spectra (Figures S1–S12, Tables S1–S3),
crystallographic details (Table S4) for complexes 3–5 and ring numbering scheme for the phosphole
(Scheme S1).
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