Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya
Abstract
:1. Introduction
2. Results
2.1. Plant Growth, Moisture Content, and Yield Attributes
2.2. Essential Oil Composition
2.3. Grouped Constituents Classes of Essential Oil
2.4. Principal Component Analysis
3. Discussion
3.1. Plant Growth, Moisture Reduction, and Yield Attributes
3.2. Essential Oil Composition
4. Materials and Methods
4.1. Experimental Site
4.2. Treatment Details
4.3. Experimental and Plant Details
4.4. Plant Growth Investigation
4.5. Identification and Determination of Essential Oil Components
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Butnariu, M.; Sarac, I. Essential oils from plants. J. Biotechnol. Biomed. Sci. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef] [PubMed]
- Giray, F.H. An analysis of world lavender oil markets and lessons for Turkey. J. Essent. Oil Bear. Plants. 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Baydar, H.; Erbas, S. Effects of harvest time and drying temperature on essential oil content and composition in lavandin (Lavandula × intermedia Emerice × Loisel.). Acta Hortic. 2009, 826, 377–382. [Google Scholar] [CrossRef]
- Kara, N.; Baydar, H. Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turkish J. Field Crop. 2013, 18, 58–65. [Google Scholar]
- Tomi, M.; Kitao, M.; Murakami, H.; Matsumura, Y.; Hayashi, T. Classification of lavender essential oils: Sedative effects of lavandula oils. J. Essent. Oil Res. 2018, 30, 56–68. [Google Scholar] [CrossRef]
- Global Essential Oil Market Report, 2020. Essential Oils Market—Global Forecast to 2025. Available online: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=119674487 (accessed on 22 December 2021).
- Rafie, S.; Namjoyan, F.; Golfakhrabadi, F.; Yousefbeyk, F.; Hassanzadeh, A. Effect of lavender essential oil as a prophylactic therapy for migraine: A randomized controlled clinical trial. J. Herb. Med. 2016, 6, 18–23. [Google Scholar] [CrossRef]
- Danh, L.T.; Han, L.N.; Triet, N.D.A.; Zhao, J.; Mammucari, R.; Foster, N. Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food Bioprocess. Technol. 2013, 6, 3481–3489. [Google Scholar] [CrossRef]
- Fismer, K.L.; Pilkington, K. Lavender and sleep: A systematic review of the evidence. Eur. J. Integr. Med. 2012, 4, 436–447. [Google Scholar] [CrossRef]
- Koulivand, P.H.; Khaleghi Ghadiri, M.; Gorji, A. Lavender and the nervous system. Evid. Based Complement. Alternat. Med. 2013, 2013, 681304. [Google Scholar] [CrossRef] [Green Version]
- Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of lavender (Lavandula angustifolia) essential oil on acute inflammatory response. Evid. Based Complement. Alternat. Med. 2018, 2018, 1413940. [Google Scholar] [CrossRef] [Green Version]
- Kivrak, S. Essential oil composition and antioxidant activities of eight cultivars of lavender and lavandin from western Anatolia. Ind. Crops Prod. 2018, 117, 88–96. [Google Scholar] [CrossRef]
- Soheili, M.; Salami, M. Lavandul aangustifolia biological characteristics: An in vitro study. J. Cell. Physiol. 2019, 234, 16424–16430. [Google Scholar] [CrossRef] [PubMed]
- Landmann, C.; Fink, B.; Festner, M.; Dregus, M.; Engel, K.H.; Schwab, W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 2007, 465, 417–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassiotis, C.N.; Lazari, D.M.; Vlachonasios, K.E. The effects of habitat type and diurnal harvest on essential oil yield and composition of Lavandula angustifolia Mill. Fresenius Environ. Bull. 2010, 19, 1491–1498. [Google Scholar]
- Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Boeckelmann, A. Monoterpene Production and Regulation in Lavenders (Lavandula angustifolia and Lavandula × intermedia). Master’s Thesis, University of British Columbia, Okanagan, BC, Canada, 2008. [Google Scholar]
- Guitton, Y.; Florence, N.; Sandrine, M.; Tarek, B.; Nadine, V.; Sylvain, L.; Frederic, J.; Laurent, L. Lavender inflorescence. Plant Signal. Behav. 2010, 5, 749–751. [Google Scholar] [CrossRef]
- Zambori-Nemeth, E. Natural variability of essential oil components. In Hand Book of Essential Oils, Science, Technology, and Applications, 2nd ed.; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press—Taylor and Francis Group LLC.: Boca Raton, FL, USA, 2015; pp. 87–126. ISBN 978-1-4665-9046-5. [Google Scholar]
- Detar, E.; Nemeth, E.Z.; Gosztola, B.; Demjan, I.; Pluhar, Z. Effects of variety and growth year on the essential oil properties of lavender (Lavandula angustifolia Mill.) and lavandin (Lavandula × intermedia Emeric ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Jeliazkova, E. Distillation time effect on lavender essential oil yield and composition. J. Oleo Sci. 2013, 62, 195–199. [Google Scholar] [CrossRef]
- Cordovilla, M.P.; Bueno, M.; Aparicio, C.; Urrestarazu, M. Effects of salinity and the interaction between Thymus vulgaris and Lavandula angustifolia on growth, ethylene production and essential oil contents. J. Plant Nutr. 2014, 37, 875–888. [Google Scholar] [CrossRef]
- Zeliha, K.; Sabri, E.; Ibrahim, E.; Hasan, B.; Figen, E. Effect of different nitrogen doses on plant growth, quality characteristics and nutrient concentrations of lavandin (Lavandula × intermedia emeric ex loisel. Var. Super A). J. Essent. Oil Bear. Plants. 2013, 18, 36–43. [Google Scholar] [CrossRef]
- Zagorcheva, T.; Stanev, S.; Rusanov, K.; Atanassov, I. Comparative GC/MS analysis of lavender (Lavandula angustifolia Mill.) inflorescence and essential oil volatiles. J. Agric. Sci. Technol. 2013, 5, 459–462. [Google Scholar]
- Zheljazkov, V.D.; Tess, A.; Alexander, N.H. Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 2012, 36, 222–228. [Google Scholar] [CrossRef]
- Hanamanthagouda, M.S.; Kakkalameli, S.B.; Naik, P.M.; Nagella, P.; Seetharamareddy, H.R.; Murthy, H.N. Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chem. 2010, 118, 836–839. [Google Scholar] [CrossRef]
- Costa, P.; Grosso, C.; Gonçalves, S.; Andrade, P.B.; Valentão, P.; Gabriela Bernardo-Gil, M.; Romano, A. Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis LçHãr. Food Chem. 2012, 135, 112–121. [Google Scholar] [CrossRef]
- Kiran Babu, G.D.; Sharma, A.; Singh, B. Volatile composition of Lavandula angustifolia produced by different extraction techniques. J. Essent. Oil Res. 2016, 28, 489–500. [Google Scholar] [CrossRef]
- Stanev, S.; Zagorcheva, T.; Atanassov, I. Lavender cultivation in Bulgaria 21st century developments, breeding challenges and opportunities. Bulg. J. Agric. Sci. 2016, 22, 584–590. [Google Scholar]
- Fascella, G.; D’Angiolillo, F.; Ruberto, G.; Napoli, E. Agronomic performance, essential oils and hydrodistillation waste waters of Lavandula angustifolia grown on biochar-based substrates. Ind. Crops Prod. 2020, 154, R713–R715. [Google Scholar] [CrossRef]
- Haloui, T.; Farah, A.; Lebrazi, S.; Fadil, M.; Alaoui, A.B. Effect of harvesting period and drying time on the essential oil yield of Pistacia lentiscus L. leaves. Der Pharma Chem. 2015, 7, 320–324. [Google Scholar]
- Assis, A.L.A.; de Cipriano, R.R.; Cuquel, F.L.; Deschamps, C. Effect of drying method and storage conditions on the essential oil yield and composition of Eugenia uniflora L. leaves. Rev. Colomb. Cienc. Hortic. 2020, 14, 275–282. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; Bartolomeis, P.D.; Martino, L.D.; Manna, F.; Nazzaro, F.; Feo, V.D.; Barba, A.A. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef] [PubMed]
- Zrira, S.; Benjilali, B. The essential oil of the leaves and the fruits of E. camaldulensis. J. Essent. Oil Res. 1991, 3, 443–444. [Google Scholar] [CrossRef]
- Smigielski, K.; Raj, A.; Krosowiak, K.; Gruska, R. Chemical composition of the essential oil of Lavandula angustifolia cultivated in Poland. J. Essent. Oil Bear. Plants. 2009, 12, 338–347. [Google Scholar] [CrossRef]
- Duskova, E.; Dusek, K.; Indrak, P.; Smekalova, K. Postharvest changes in essential oil content and quality of lavender flowers. Ind. Crops Prod. 2016, 79, 225–231. [Google Scholar] [CrossRef]
- Wulandari, Y.W.; Anwar, C.; Supriyadi, S. Effects of drying time on essential oil production of kaffir lime (Citrus hystrix DC) leaves at ambient temperature. In Proceedings of the International Conference on Food Science and Engineering, IOP Conference Series: Materials Science and Engineering, Central Java, Indonesia, 25–26 September 2018; Volume 633, p. 012011. [Google Scholar] [CrossRef]
- Raina, A.P.; Negi, K.S. Comparative essential oil composition of lavandula species from India. J. Herbs Spices Med. Plants 2012, 18, 268–273. [Google Scholar] [CrossRef]
- Shellie, R.; Mondello, L.; Marriott, P.; Dugo, G. Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional chromatography. J. Chromatogr. A 2002, 13, 225–234. [Google Scholar] [CrossRef]
- Gharib, F.A.; Badr, S.E.A.; Al-Ghazali, B.A.S.; Zahran, M.K. Chemical composition, antioxidant and antibacterial activities of lavender and marjoram essential oils. Egypt. J. Chem. 2013, 56, 1–24. [Google Scholar]
- Kiran Babu, G.D.; Singh, B. Characteristics variation of lavender oil produced by different hydrodistillation techniques. In Compendium of Bioactive Natural Products; Gupta, V.K., Ed.; Studium Press LLC.: New Delhi, India, 2010; Volume 8, pp. 122–136. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Sakamura, F. Changes in volatile oil constituents of Zingiber officinale rhizomes during storage and cultivation. Phytochem. 1987, 26, 2207–2221. [Google Scholar] [CrossRef]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- McConkey, M.E.; Gershenzon, J.; Croteau, R.B. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 2000, 122, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.H.; Wang, J.W.; Wang, S.; Wang, J.Y.; Chen, X.Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol. 2004, 135, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heral, B.; Stierlin, E.; Fernandez, X.; Michel, T. Phytochemicals from the genus Lavandula: A review. Phytochem. Rev. 2021, 20, 751–771. [Google Scholar] [CrossRef]
- Salehi, B.; Mnayer, D.; Özçelik, B.; Altin, G.; Kasapoğlu, K.N.; Daskaya-Dikmen, C.; Sharifi-Rad, M.; Selamoglu, Z.; Acharya, K.; Sen, S.; et al. Plants of the genus Lavandula: From farm to pharmacy. Nat. Prod. Commun. 2018, 13, 1385–1402. [Google Scholar] [CrossRef] [Green Version]
- Ezzoubi, Y.; Bousta, D.; Farah, A. A phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clin. Phytoscience. 2020, 6, 9. [Google Scholar] [CrossRef]
- Jiang, Z.; Kempinski, C.; Chappell, J. Extraction and analysis of terpenes/terpenoids. Curr. Protoc. Plant Biol. 2017, 1, 345–358. [Google Scholar] [CrossRef] [Green Version]
- An, M.; Haig, T.; Hatfield, P. On-site field sampling and analysis of fragrance from living Lavender (Lavandula angustifolia L.) flowers by solid-phase microextraction coupled to gas chromatography and ion-trap mass spectrometry. J. Chromatogr. A 2001, 917, 245–250. [Google Scholar] [CrossRef]
- Stierlin, E.; Nicolè, F.; Costes, T.; Fernandez, X.; Michel, T. Metabolomic study of volatile compounds emitted by lavender grown under open-field conditions: A potential approach to investigate the yellow decline disease. Metabolomics 2020, 16, 31. [Google Scholar] [CrossRef]
- Council of Europe and European Pharmacopeia Commission. European Pharmacopoeia; Version 6.0; Council of Europe: Strasbourg, France, 2007; Volume 1. [Google Scholar]
- Rathore, S.; Kumar, R. Agronomic interventions affect the growth, yield, and essential oil composition of German chamomile (Matricaria chamomilla L.) in the western Himalaya. Ind. Crops Prod. 2021, 171, 113873. [Google Scholar] [CrossRef]
- Adams, P.R. Identification of Essential oil Components by Gas Chromatography/ Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
- Stein, S.E. Mass Spectral Database and Software; Version 3.02; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2005. [Google Scholar]
Treatment | Constituents | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3-Octanone | α-Phellandrene | Limonene | 1,8-Cineole | (Z)-β-Ocimene | Linalool | Isophorone | Terpinen-4-ol | Cryptone | Linalyl Propionate | Linalyl Acetate | Lavandulyl Acetate | Neryl Acetate | Caryophyllene | Delta-Cadinene | Caryophyllene Oxide | |
RI (Expt.) | 982 | 1004 | 1025 | 1027 | 1030 | 1097 | 1125 | 1173 | 1187 | 1223 | 1250 | 1279 | 1350 | 1409 | 1547 | 1578 |
RI (Lit.) | 979 | 1002 | 1024 | 1026 | 1032 | 1095 | 1118 | 1174 | 1183 | 1214 | 1254 | 1288 | 1359 | 1408 | 1522 | 1582 |
L. angustifolia | ||||||||||||||||
Drying hours | ||||||||||||||||
0 h | 2.5 | 0.3 | 0.6 | 0.0 | 3.3 | 41.9 | 0.0 | 0.5 | 2.6 | 5.4 | 0.6 | 30.8 | 3.0 | 2.9 | 0.6 | 0.0 |
24 h | 2.4 | 0.0 | 1.0 | 0.0 | 4.6 | 45.0 | 0.0 | 0.9 | 3.0 | 9.9 | 1.5 | 14.7 | 4.5 | 6.3 | 0.8 | 0.0 |
48 h | 2.4 | 0.2 | 0.6 | 2.7 | 1.4 | 35.1 | 0.0 | 2.2 | 6.3 | 0.7 | 34.2 | 3.6 | 3.5 | 1.0 | 0.0 | 0.0 |
72 h | 2.4 | 0.0 | 0.8 | 1.4 | 3.0 | 40.0 | 0.0 | 1.5 | 4.7 | 5.3 | 17.9 | 9.1 | 4.0 | 3.6 | 0.0 | 0.0 |
Mean | 2.4 | 0.1 | 0.8 | 1.0 | 3.1 | 40.5 | 0.0 | 1.3 | 4.2 | 5.3 | 13.6 | 14.5 | 3.8 | 3.4 | 0.3 | 0.0 |
L. × intermedia | ||||||||||||||||
Drying hours | ||||||||||||||||
0 h | 2.3 | 0.3 | 1.0 | 0.0 | 13.5 | 38.0 | 10.7 | 4.7 | 0.6 | 16.9 | 3.7 | 2.8 | 0.6 | 0.0 | 0.0 | 0.9 |
24 h | 2.5 | 0.5 | 1.0 | 0.0 | 15.6 | 33.0 | 10.2 | 3.8 | 0.0 | 21.9 | 3.0 | 1.6 | 0.9 | 0.0 | 0.0 | 0.3 |
48 h | 1.9 | 0.0 | 0.8 | 0.0 | 11.5 | 32.9 | 0.0 | 7.3 | 4.6 | 9.0 | 17.9 | 3.5 | 2.4 | 0.0 | 0.0 | 1.7 |
72 h | 2.0 | 0.0 | 0.9 | 0.0 | 12.2 | 30.7 | 0.0 | 7.3 | 4.2 | 8.6 | 18.4 | 3.4 | 1.5 | 0.0 | 0.0 | 1.7 |
Mean | 2.2 | 0.2 | 0.9 | 0.0 | 13.2 | 33.6 | 5.2 | 5.8 | 2.3 | 14.1 | 10.8 | 2.8 | 1.3 | 0.0 | 0.0 | 1.1 |
Mean (DH) | ||||||||||||||||
0 h | 2.4 | 0.3 | 0.8 | 0.0 | 8.4 | 39.9 | 5.4 | 2.6 | 1.6 | 11.2 | 2.2 | 16.8 | 1.8 | 1.4 | 0.3 | 0.4 |
24 h | 2.4 | 0.2 | 1.0 | 0.0 | 10.1 | 39.0 | 5.1 | 2.4 | 1.5 | 15.9 | 2.3 | 8.1 | 2.7 | 3.1 | 0.4 | 0.2 |
48 h | 2.1 | 0.1 | 0.7 | 1.4 | 6.4 | 34.0 | 0.0 | 4.7 | 5.5 | 4.9 | 26.1 | 3.5 | 2.9 | 0.5 | 0.0 | 0.8 |
72 h | 2.2 | 0.0 | 0.8 | 0.7 | 7.6 | 35.4 | 0.0 | 4.4 | 4.4 | 6.9 | 18.1 | 6.3 | 2.8 | 1.8 | 0.0 | 0.8 |
LSD (p = 0.05) | ||||||||||||||||
LS | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.2 | 0.5 | 0.3 | 0.1 | 0.3 | 0.3 | 0.2 |
DH | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.1 | 0.2 | 0.2 | 0.7 | 0.4 | 0.2 | 0.4 | NS | 0.2 |
LS × DH | 0.1 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.2 | 0.3 | 0.3 | 0.9 | 0.6 | 0.3 | 0.6 | NS | 0.3 |
Treatment | Monoterpenes | Oxygenated Monoterpenes | Sesquiterpenes | Oxygenated Sesquiterpenes |
---|---|---|---|---|
L. angustifolia | ||||
Drying hours | ||||
0 h | 48.62 | 42.89 | 3.47 | 0.00 |
24 h | 52.97 | 34.59 | 7.05 | 0.00 |
48 h | 42.47 | 50.52 | 0.96 | 0.00 |
72 h | 47.64 | 42.56 | 3.63 | 0.00 |
Mean | 47.93 | 42.64 | 3.78 | 0.00 |
L. × intermedia | ||||
Drying hours | ||||
0 h | 55.17 | 40.02 | 0.00 | 0.85 |
24 h | 52.46 | 41.40 | 0.00 | 0.31 |
48 h | 47.06 | 44.61 | 0.00 | 1.69 |
72 h | 45.69 | 43.33 | 0.00 | 1.69 |
Mean | 50.10 | 42.34 | 0.00 | 1.13 |
Mean (DH) | ||||
0 h | 51.90 | 41.45 | 1.74 | 0.43 |
24 h | 52.72 | 38.00 | 3.52 | 0.15 |
48 h | 44.77 | 47.57 | 0.48 | 0.85 |
72 h | 46.66 | 42.94 | 1.81 | 0.84 |
LSD (p = 0.05) | ||||
LS | 0.31 | NS | 0.39 | 0.16 |
DH | 0.44 | 0.80 | 0.55 | 0.23 |
LS × DH | 0.62 | 1.13 | 0.78 | 0.33 |
Essential Oil Constituents | Lavandula Species | ||||||
---|---|---|---|---|---|---|---|
L. angustifolia | L. × intermedia | ||||||
Cluster I | Cluster II | Cluster III | Cluster IV | Cluster I | Cluster II | Cluster III | |
3-octanone | 2.5 | 2.4 | 2.4 | 2.4 | 2.3 | 2.5 | 3.9 |
(Z)-β-ocimene | 3.3 | 4.6 | 1.4 | 3.0 | 13.5 | 15.6 | 23.6 |
Linalool | 41.9 | 45.0 | 35.1 | 40.0 | 38.0 | 33.0 | 63.5 |
Isophorone | 0.0 | 0.0 | 0.0 | 0.0 | 10.7 | 10.2 | 0.0 |
Terpinen-4-ol | 0.5 | 0.9 | 2.2 | 1.5 | 4.7 | 3.8 | 14.6 |
Cryptone | 2.6 | 3.0 | 6.3 | 4.7 | 0.6 | 0.0 | 8.8 |
Linalyl propionate | 5.4 | 9.9 | 0.7 | 5.3 | 16.9 | 21.9 | 17.6 |
Linalyl acetate | 0.6 | 1.5 | 34.2 | 17.9 | 3.7 | 3.0 | 36.2 |
Lavandulyl acetate | 30.8 | 14.7 | 3.6 | 9.1 | 2.8 | 1.6 | 6.8 |
Neryl acetate | 3.0 | 4.5 | 3.5 | 4.0 | 0.0 | 0.0 | 0.0 |
Caryophyllene | 2.9 | 6.3 | 1.0 | 3.6 | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathore, S.; Kumar, R. Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya. Molecules 2022, 27, 3391. https://doi.org/10.3390/molecules27113391
Rathore S, Kumar R. Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya. Molecules. 2022; 27(11):3391. https://doi.org/10.3390/molecules27113391
Chicago/Turabian StyleRathore, Shalika, and Rakesh Kumar. 2022. "Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya" Molecules 27, no. 11: 3391. https://doi.org/10.3390/molecules27113391
APA StyleRathore, S., & Kumar, R. (2022). Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya. Molecules, 27(11), 3391. https://doi.org/10.3390/molecules27113391