Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Experimental Methods
4.2. Salinispora arenicola Strain RJA3005
4.2.1. Bacterial Material and Isolation of 3 and 4
4.2.2. Salinorcinol (3)
4.2.3. Salinacetamide (4)
4.3. Salinispora arenicola Strain RJA4486
4.3.1. Bacterial Material
4.3.2. Isolation of Salinisporamine (5)
4.3.3. Salinisporamine (5)
4.4. Genome Extraction and Sequencing
4.5. Bioinformatic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jensen, P.R.; Moore, B.S.; Fenical, W. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat. Prod. Rep. 2015, 32, 738–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat. Chem. Biol. 2006, 2, 666–673. [Google Scholar] [CrossRef]
- Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.R.; Mafnas, C. Biogeography of the marine actinomycete Salinispora. Environ. Microbiol. 2006, 8, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, A.; Velasco-Alzate, K.; Dias, T.; Macedo, H.; Ferreira, E.G.; Jimenez, P.C.; Lotufo, T.M.C.; Lopes, N.P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Metabolomic Fingerprinting of Salinispora from Atlantic Oceanic Islands. Front. Microbiol. 2018, 9, 3021. [Google Scholar] [CrossRef]
- Martinelli, E.; Gallo, G.G.; Antonini, P.; White, R.J. Structure of rifamycin W, a novel ansamycin from a mutant of Norcardia mediterranei. Tetrahedron 1974, 30, 3087–3091. [Google Scholar] [CrossRef]
- Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. New alkaloid AM-2282 of Streptomyces origin: Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. 1977, 30, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Bułyszko, I.; Dräger, G.; Klenge, A.; Kirschning, A. Evaluation of the Synthetic Potential of an AHBA Knockout Mutant of the Rifamycin Producer Amycolatopsis mediterranei. Chem. Eur. J. 2015, 21, 19231–19242. [Google Scholar] [CrossRef]
- Xu, J.; Wan, E.; Kim, C.-J.; Floss, H.G.; Mahmud, T. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology 2005, 151, 2515–2528. [Google Scholar] [CrossRef] [Green Version]
- August, P.R.; Tang, L.; Yoon, Y.J.; Ning, S.; Müller, R.; Yu, T.-W.; Taylor, M.; Hoffmann, D.; Kim, C.-G.; Zhang, X.; et al. Biosynthesis of ansmycin antibiotic rifamycin: Deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 1998, 5, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de Los Santos, E.L.C.; Kim, H.U.; Nave, M.; et al. AntiSMASH 4.0-Improvements in Chemistry Prediction and Gene Cluster Boundary Identification. Nucl. Acids Res. 2017, 45, W36–W41. [Google Scholar] [CrossRef]
- Kautsar, S.A.; Blin, K.; Shaw, S.; Navarro-Muñoz, J.C.; Terlouw, B.R.; van der Hooft, J.J.J.; van Santen, J.A.; Tracanna, V.; Suarez Duran, H.G.; Pascal Andreu, V.; et al. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucl. Acids Res. 2019, 48, D454–D458. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Sabido, E.M.; Tenebro, C.P.; Trono, D.J.V.L.; Vicera, C.V.B.; Leonida, S.F.L.; Maybay, J.J.W.B.; Reyes-Salarda, R.; Amago, D.S.; Aguadera, A.M.V.; Octaviano, M.C.; et al. Insights into the Variation in Bioactivities of Closely Related Streptomyces Strains from Marine Sediments of the Visayan Sea against ESKAPE and Ovarian Cancer. Mar. Drugs 2021, 19, 441. [Google Scholar] [CrossRef]
- Tenebro, C.P.; Trono, D.; Vicera, C.; Sabido, E.M.; Ysulat, J.A., Jr.; Macaspac, A.; Tampus, K.A.; Fabrigar, T.; Saludes, J.P.; Dalisay, D.S. Multiple strain analysis of Streptomyces species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Sci. Rep. 2021, 11, 17544. [Google Scholar] [CrossRef]
- Egan, S.; Wiener, P.; Kallifidas, D.; Wellington, E.M. Transfer of streptomycin biosynthesis gene clusters within Streptomycetes isolated from soil. Appl. Environ. Microbiol. 1998, 64, 5061–5063. [Google Scholar] [CrossRef] [Green Version]
- Ziemert, N.; Lechner, A.; Wietz, M.; Millán-Aguiñaga, N.; Chavarria, K.L.; Jensen, P.R. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. USA 2014, 111, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Letzel, A.C.; Li, J.; Amos, G.; Millán-Aguiñaga, N.; Ginigini, J.; Abdelmohsen, U.R.; Gaudêncio, S.P.; Ziemert, N.; Moore, B.S.; Jensen, P.R. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ. Microbiol. 2017, 19, 3660–3673. [Google Scholar] [CrossRef]
- Maldonado, L.A.; Fenical, W.; Jensen, P.R.; Kauffman, C.A.; Mincer, T.J.; Ward, A.C.; Bull, A.T.; Goodfellow, M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2005, 55, 1759–1766. [Google Scholar] [CrossRef] [Green Version]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucl. Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucl. Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef] [PubMed]
Salinorcinol (3) | Salinacetamide (4) | ||||
---|---|---|---|---|---|
Position | δC/δN | δH (J = Hz) | δC/δN | δH (J = Hz) | |
1 | C | 165.2 | - | 165.2 | - |
2 | C | 96.6 | - | 96.8 | - |
3 | C | 165.2 | - | 164.7 | - |
4 | CH | 100.0 | 5.99 s | 100.7 | 5.99 s |
5 | C | 164.2 | - | 164.1 | - |
6 | CH | 45.4 | 2.64 q (~7.1) | 46.6 | 2.66 q (~7.1) |
7 | CH | 74.7 | 4.36 dd (4.0, 8.5) | 74.8 | 4.42 dd (4.0, 8.5) |
8 | C | 145.4 | - | 145.1 | - |
9 | CH | 104.8 | 6.16 d (2.2) | 109.3 | 6.39 br. s |
10 | C | 157.9 | - | 157.0 | - |
11 | CH | 101.5 | 6.09 t (2.2) | 106.1 | 7.14 br.t (1.68) |
12 | C | 157.9 | - | 168.3 | - |
13 | CH | 104.8 | 6.16 d (2.2) | 108.5 | 6.89 br.s |
14 | CH3 | 8.5 | 1.75 s | 9.02 | 1.77 s |
15 | CH3 | 14.9 | 0.85 d (7.1) | 14.9 | 0.84 d (7.1) |
16 | HNCOCH3 | - | - | 140.0 | - |
17 | HNCOCH3 | - | - | 24.2 | 2.01 s |
12-OH | OH | - | 9.15 | - | - |
12′-NH | NH | - | - | −247.1 | 9.80 |
10-OH | OH | - | 9.15 | - | 9.33 |
7-OH | OH | - | 5.32 d (4.0) | - | 5.42 d (4.0) |
3-OH | OH | - | 11.13 | - | 11.07 |
Salinisporamine (5) | ||
---|---|---|
Position | 13C/15N (δ) | 1H (δ, multiplicity (J Hz)) |
1 | 163.6 | - |
2 | 121.9 | - |
3 | 144.2 | 7.30, q (1.0) |
4 | 112.0 | - |
5 | 152.1 | - |
6 | 117.7 | - |
7 | 159.4 br | - |
8 | 129.5 | - |
9 | 130.5 | 7.89, q (0.6) |
10 | 123.2 | - |
11 | 180.8 | - |
12 | 149.5 | - |
13 | 102.6 | 5.58, s |
14 | 181.8 | - |
15 | 131.4 | - |
16 | 16.2 | 2.02, d (1.0) |
17 | 14.7 | 1.59, s |
18 | 16.7 | 2.30, bs |
7-OH | - | 10.10, s |
12-NH | no | 7.05, bs (half height 232.2 Hz) |
S. arenicola CNS-991 KB913036.1 | S. arenicola RJA3005 | S. arenicola RJA4486 | |
---|---|---|---|
NRP | Vazabitide A | Thiocoralin | Nematophin |
Closest Homologous Gene Cluster | Stenothricin | Stenothricin | Stenothricin |
Truncated | Myxochelin A | ||
Tallysomycin | Tallysomycin | ||
Unknown | |||
Hybrid | Leinamycin | Maduropeptin | Thalassospiramide A |
Closest Homologous Gene Cluster | Lymphostin | Ikarugumycin | Lymphostin |
Calicheamicin × 2 | Calicheamicin × 2 | Calicheamicin × 2 | |
Polyoxypeptin | Neocazinostatin | ||
Collismycin | |||
PKS | Rifamycin * | PKS Rifamycin * | PKS Rifamycin * |
Closest Homologous Gene Cluster | Sporolide A | Sporolide A | Sporolide A and B |
Kedarcidin | Mediamycin | Naphthyridinomycin | |
Paramagnetoquinone | Paramagnetoquinone | Paramagnetoquinone | |
Alkyl-O-dihydrogeranyl-methoxyhydroquinones | Alkyl-O-dihydrogeranyl-methoxyhydroquinones | Alkyl-O-dihydrogeranyl-methoxyhydroquinones | |
Herboxidiene | Amycomicin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, D.E.; Morgan, K.D.; Dalisay, D.S.; Matainaho, T.; Perrachon, E.; Viller, N.; Delcroix, M.; Gauchot, J.; Niikura, H.; Patrick, B.O.; et al. Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules 2022, 27, 3569. https://doi.org/10.3390/molecules27113569
Williams DE, Morgan KD, Dalisay DS, Matainaho T, Perrachon E, Viller N, Delcroix M, Gauchot J, Niikura H, Patrick BO, et al. Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules. 2022; 27(11):3569. https://doi.org/10.3390/molecules27113569
Chicago/Turabian StyleWilliams, David E., Kalindi D. Morgan, Doralyn S. Dalisay, Teatulohi Matainaho, Elodie Perrachon, Noemie Viller, Maïlys Delcroix, Jeanne Gauchot, Haruka Niikura, Brian O. Patrick, and et al. 2022. "Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments" Molecules 27, no. 11: 3569. https://doi.org/10.3390/molecules27113569
APA StyleWilliams, D. E., Morgan, K. D., Dalisay, D. S., Matainaho, T., Perrachon, E., Viller, N., Delcroix, M., Gauchot, J., Niikura, H., Patrick, B. O., Ryan, K. S., & Andersen, R. J. (2022). Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules, 27(11), 3569. https://doi.org/10.3390/molecules27113569