Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The National Institute for Occupational Safety and Health (NIOSH). Available online: https://www.cdc.gov/niosh/index.htm (accessed on 13 April 2022).
- Carbon Dioxide. Health Hazard Information Sheet. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf (accessed on 11 April 2022).
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Pan, L.; Tang, S.; Ji, J.S.; Shi, X. Mask use during COVID-19: A risk-adjusted strategy. Env. Pollut. 2020, 266, 115099. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Y.; Li, M.; Qian, X.; Dai, S.Y. Mask or no mask for COVID-19: A public health and market study. PLoS ONE 2020, 15, e0237691. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, C.R.; Cauchemez, S.; Dwyer, D.E.; Seale, H.; Cheung, P.; Browne, G.; Fasher, M.; Wood, J.; Gao, Z.; Booy, R.; et al. Facemask use and control of respiratory virus transmission in households. Emerg Infect Dis. 2009, 15, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Cowling, B.J.; Zhou, Y.; Ip, D.K.M.; Leung, G.M.; Aiello, A.E. Facemasks to prevent transmission of influenza virus: A systematic review. Epidemiol Infect. 2010, 138, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur Respir J. 2020, 55, 2001260. [Google Scholar] [CrossRef]
- Gillespie, C. Does wearing a face mask reduce oxygen- and can it increase CO2 levels? Here’s What Experts Say. Health. 2020. Available online: https://www.health.com/condition/infectious-diseases/coronavirus/does-wearing-face-mask-increase-co2-levels (accessed on 13 April 2022).
- Scheid, J.L.; Lupien, S.P.; Ford, G.S.; West, S.L. Commentary: Physiological and psychological impact of face mask usage during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6655. [Google Scholar] [CrossRef]
- Geiss, O. Effect of Wearing Face Masks on the Carbon Dioxide Concentration in the Breathing Zone. Aerosol Air Qual. Res. 2021, 21, 200403. [Google Scholar] [CrossRef]
- Dattel, A.R.; O’Toole, N.M.; Lopez, G.; Byrnes, K.P. Face Mask Effects of CO2, Heart Rate, Respiration Rate, and Oxygen Saturation on Instructor Pilots. Coll. Aviat. Rev. Int. 2020, 38, 1–11. [Google Scholar] [CrossRef]
- Rhee, M.S.M.; Lindquist, C.D.; Silvestrini, M.T.; Chan, A.C.; Ong, J.J.Y.; Sharma, V.K. Carbon dioxide increases with face masks but remains below short-term NIOSH limits. BMC Infect Dis 2021, 21, 354. [Google Scholar] [CrossRef]
- Li, Y.; Tokura, H.; Guo, Y.P.; Wong, A.S.; Wong, T.; Chung, J.; Newton, E. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Int Arch Occup Environ Health. 2005, 78, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Popa, C. Ethylene Measurements from Sweet Fruits Flowers Using Photoacoustic Spectroscopy. Molecules 2019, 24, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, C.; Bratu, A.M.; Bacalum, M.; Prepelita, P. Application of the laser technology on the effect of Cd phytotoxicity in the detection of NH3, C2H4, C2H5OH and CO2 biomolecules at Triticum Aestivum plantlets. Sustain. Chem. Pharm. 2020, 15, 100208. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Petrus, M.; Bratu, A.-M.; Popa, C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020, 25, 1728. [Google Scholar] [CrossRef]
- Kwiatkowski, A.; Drozdowska, K.; Smulko, J. Embedded gas sensing setup for air samples analysis. Rev Sci Instrum. 2021, 92, 074102. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Yu, B. Recent Progress on Infrared Photoacoustic Spectroscopy Techniques. Appl. Spectrosc. Rev. 2011, 46, 440–471. [Google Scholar] [CrossRef]
- Alexander, J.S.; Trimborn, M.; Büscher, W.; Binions, R. Methodological Comparison between a Novel Automatic Sampling System for Gas Chromatography versus Photoacoustic Spectroscopy for Measuring Greenhouse Gas Emissions under Field Conditions. Sensors 2016, 16, 1638. [Google Scholar]
- Maria, B.A.; Cristina, P.; Mihaela, B.; Catalin, L.P.; Mioara, P. Non-destructive methods for fruit quality evaluation. Sci. Rep. 2021, 11, 7782. [Google Scholar]
- Yin, X.; Dong, L.; Wu, H.; Zhang, L.; Ma, W.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Highly Sensitive Photoacoustic Multicomponent Gas Sensor for SF6 Decomposition Online Monitoring. Opt. Express 2019, 27, A224–A234. [Google Scholar] [CrossRef] [Green Version]
- Linhares, F.; Lima, M.; Mothé, G.; Castro, M.P.; Gomes da Silva, M.; Sthel, M. Photoacoustic spectroscopy for detection of N2O emitted from combustion of diesel/beef tallow biodiesel/sugarcane diesel and diesel/beef tallow biodiesel blends. Biomass Convers. Biorefinery 2019, 9, 577–583. [Google Scholar] [CrossRef]
- Abbas, S.G.; Mustafa, S.G.; Imtiaz, R.M.; Groot, J.C.J.; Traore, B.; Lantinga, E.A. Bedding Additives Reduce Ammonia Emission and Improve Crop N Uptake after Soil Application of Solid Cattle Manure. J. Environ. Management 2018, 209, 195–204. [Google Scholar]
- Yin, X.; Dong, L.; Wu, H.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; Jia, S.; Tittel, F.K. Sub-Ppb Nitrogen Dioxide Detection with a Large Linear Dynamic Range by Use of a Differential Photoacoustic Cell and a 3.5 W Blue Multimode Diode Laser. Sens. Actuators B Chem. 2017, 247, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Alahmari, S.; Kang, X.; Hippler, M. Diode laser photoacoustic spectroscopy of CO2, H2S and O2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry. Anal. Bioanal. Chemistry 2019, 411, 3777–3787. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, S.M.; Persijn, S.T.; Hekkert, S.T.L.; Harren, F.J.M. Laser-based systems for trace gas detection in life sciences. Appl. Phys. B 2008, 92, 343–349. [Google Scholar] [CrossRef]
- Harren, F.J.M.; Mandon, J.; Cristescu, S.M. Photoacoustic spectroscopy in trace gas monitoring. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Chichester, UK, 2012. [Google Scholar]
- Dumitras, D.C.; Banita, S.; Bratu, A.M.; Cernat, R.; Dutu, D.C.A.; Matei, C.; Patachia, M.; Petrus, M.; Popa, C. Ultrasensitive CO2 laser photoacoustic system. Infrared Phys. Tech. J. 2010, 53, 308–314. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Bratu, A.M.; Popa, C. CO2, Laser Photoacoustic Spectroscopy: Principles. In CO Laser-Optimisation and Application; Intech Open: London, UK, 2012; ISBN 979-953-307-712-2. [Google Scholar]
- Dumitras, D.C.; Dutu, D.C.; Matei, C.; Magureanu, A.M.; Petrus, M.; Popa, C. Laser photoacoustic spectroscopy: Principles, instrumentation and characterization. J.Optoelectron. Adv. Mater. 2007, 9, 3655–3701. [Google Scholar]
- Ivascu, R.; Matei, C.E.; Patachia, M.; Bratu, A.M.; Dumitras, D.C. Photoacoustic measurement of the CO2 absorption coefficients within infrared region of CO2 laser spectrum. Rom. J. Phys. 2015, 60, 1121. [Google Scholar]
- Smith, C.; Whitelaw, J.; Davies, B. Carbon dioxide rebreathing in respiratory protective devices: Influence of speech and work rate in full-face masks. Ergonomics 2013, 56, 781–790. [Google Scholar] [CrossRef]
- Permentier, K.; Vercammen, S.; Soetaert, S.; Schellemans, C. Carbon dioxide poisoning: A literature review of an often forgotten cause of intoxication in the emergency department. Int. J. Emerg. Med. 2017, 10, 17–20. [Google Scholar] [CrossRef]
- Schneider, E.C.; Truesdell, D. The effect on the circulation and respiration of an increase in the carbon dioxide content of the blood in man. Am. J. Physiol. 1922, 63, 155–175. [Google Scholar] [CrossRef]
- Schulte, J. Sealed Environments in Relation to Health and Disease. Arch. Environ. Health 1964, 8, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Guais, A.; Brand, G.; Jacquot, L.; Karrer, M.; Dukan, S.; Grevillot, G.; Molina, T.J.; Bonte, J.; Regnier, M.; Schwartz, L. Toxicity of carbon dioxide: A review. Chem. Res. Toxicol. 2011, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.C.H.; Seet, R.C.S.; Lee, K.H.; Wilder-Smith, E.P.V.; Chuah, B.Y.S.; Ong, B.K.C. Headaches and the N95 face-mask amongst healthcare providers. Acta Nuerol. Scand. 2006, 113, 199–202. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D. Is CO2 an indoor pollutant? direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1678. [Google Scholar] [CrossRef] [Green Version]
- Dumitras, D.C.; Bratu, A.M.; Popa, C. CO2 Laser Photoacoustic Spectroscopy: II. Instrumentation and Applications. In CO2 Laser-Optimisation and Application; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Popa, C.; Petrus, M.; Bratu, A.M.; Negut, I. Experimental Investigation on Water Adsorption Using Laser Photoacoustic Spectroscopy and Numerical Simulations. Materials 2021, 14, 5839. [Google Scholar] [CrossRef]
- Bratu, A.M.; Popa, C.; Matei, C.; Banita, S.; Dutu, D.C.A.; Dumitras, D.C. Removal of interfering gases in breath biomarker measurements. J. Optoelectron. Adv. Mater. 2011, 13, 1045–1050. [Google Scholar]
- Popa, C.; Bratu, A.M. Applicability of the spectroscopy in the analysis of scuba diverse respiration. Environ. Eng. Manag. J. 2021, 20, 229–236. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Aluminum coated bags kit | 0.75 L |
Resonant cell frequency | 564 Hz |
Resonant cell pressure | ≈1030 mb |
Resonant cell volume | 1000 cm3 |
Total microphone sensitivity | 80 mV/Pa |
Gas absorption coefficient | carbon dioxide- 9P(18); λ = 9.53 μm; α = 3.01 × 10−3 cm−1atm−1 ethylene-10P(14); λ = 10.53 μm; α = 30.4 cm−1atm−1 |
Temperature | ≈23–25 °C |
Responsivity | 240 cmV/W |
Human respiration time analysis | ≈300 s |
Nitrogen air outflow composition | Linde gas: nitrogen 5.0 (purity 99.999%) and 6.0 (purity 99.9999%) |
Ethylene composition | Linde gas: 0.96 ppmV (±5%) C2H4 diluted in nitrogen 5.0 (purity 99.999%) |
Carbon dioxide composition | Linde gas: 991 ppm in pure nitrogen |
Carbon dioxide retention | KOH pellets |
Water retention | Silica gel pellets |
Q — quality factor of the system | 16.1 |
CO2 laser operating mode | TEM00 |
Flow rate | 600 sccm |
CO2 Experiments | Replicates before Wearing the mask | Average before Wearing the Mask (ppm) | SD before Wearing the Mask (ppm) | Rel. SD % | Replicates after Wearing the Mask | Average after Wearing the Mask (ppm) | SD after Wearing the Mask (ppm) | Rel. SD % |
---|---|---|---|---|---|---|---|---|
day 1 | 4 | 370 | 2.6 | 0.7 | 4 | 452 | 2.9 | 0.64 |
day 2 | 4 | 365 | 3.51 | 0.96 | 4 | 457 | 2.3 | 0.5 |
day 3 | 4 | 370 | 2.6 | 0.7 | 4 | 453 | 2.8 | 0.62 |
inter-day | 12 | 368 | 2.89 | 0.79 | 12 | 454 | 2.7 | 0.6 |
CO2 Experiments | Replicates before Wearing the mask | Average before Wearing the Mask (ppm) | SD before Wearing the Mask (ppm) | Rel. SD % | Replicates after Wearing the Mask | Average after Wearing the Mask (ppm) | SD after Wearing the Mask (ppm) | Rel. SD % |
---|---|---|---|---|---|---|---|---|
day 1 | 4 | 0.017 | 0.001 | 5.88 | 4 | 0.029 | 0.003 | 10.4 |
day 2 | 4 | 0.018 | 0.002 | 11.12 | 4 | 0.023 | 0.003 | 13.1 |
day 3 | 4 | 0.019 | 0.001 | 5.26 | 4 | 0.029 | 0.002 | 7 |
inter-day | 12 | 0.018 | 0.0013 | 7.4 | 12 | 0.027 | 0.0028 | 10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, C.; Petrus, M.; Bratu, A.M. Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy. Molecules 2022, 27, 3618. https://doi.org/10.3390/molecules27113618
Popa C, Petrus M, Bratu AM. Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy. Molecules. 2022; 27(11):3618. https://doi.org/10.3390/molecules27113618
Chicago/Turabian StylePopa, Cristina, Mioara Petrus, and Ana Maria Bratu. 2022. "Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy" Molecules 27, no. 11: 3618. https://doi.org/10.3390/molecules27113618
APA StylePopa, C., Petrus, M., & Bratu, A. M. (2022). Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy. Molecules, 27(11), 3618. https://doi.org/10.3390/molecules27113618