Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the n-BGs
2.1.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.1.2. X-ray Diffraction (XRD) of n-BGs
2.1.3. Thermal Analysis for the n-BGs
2.1.4. Transmission Electron Microscopy (TEM)
2.2. Characterization of PLA/n-BGs Nanocomposites
2.2.1. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.2.2. Thermal Analysis of PLA/n-BGs Nanocomposites
2.2.3. XRD of PLA/n-BGs Nanocomposites
2.2.4. Morphological Analysis of neat PLA and PLA/n-BGs Nanocomposites
2.2.5. TEM Images of the PLA/n-BGs Nanocomposites
2.2.6. Mechanical Tests of PLA/n-BGs Nanocomposites
2.3. Biological Tests of n-BGs and PLA/n-BGs Nanocomposites
2.3.1. Antimicrobial Activity of n-BGs against Pathogenic Bacteria
2.3.2. MTT Cell Viability Assay with HeLa Cells
2.3.3. Biocompatibility Test in Biomodels (In Vivo)
Histological Evaluation of Neat PLA Scaffolds
Histological Evaluation for the Nanocomposite PLA/n-BGs 5 wt.%
Histological Evaluation for the Nanocomposites PLA/n-BGs 10 wt.%
3. Materials and Methods
3.1. Synthesis of n-BGs
3.1.1. Characterization of the n-BGs
Fourier Transform Infrared Spectroscopy (FT-IR)
Thermal Analysis
X-ray Diffraction (XRD)
Scanning Electron Microscopy (SEM)
Transmission Electron Microscopy (TEM)
3.2. Preparation of PLA/n-BGs scaffolds
3.2.1. Characterization of PLA/n-BGs Nanocomposites
Fourier Transform Infrared Spectroscopy (FT-IR)
X-ray Diffraction (XRD)
Scanning Electron Microscopy (SEM)
Transmission Electron Microscopy (TEM)
Thermal Analysis
3.3. Biological Tests
3.3.1. Analysis of Antimicrobial Activity
3.3.2. MTT Cell Viability Assay
3.3.3. Histological Analysis of PLA/n-BGs Nanocomposites
3.4 Statistic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Christy, P.N.; Basha, S.K.; Kumari, V.S.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Biopolymeric Nanocomposite Scaffolds for Bone Tissue Engineering Applications—A Review. J. Drug Deliv. Sci. Technol. 2020, 55, 101452. [Google Scholar] [CrossRef]
- Kanimozhi, K.; KhaleelBasha, S.; SuganthaKumari, V.; Kaviyarasu, K. Development and Characterization of Sodium Alginate/Poly (Vinyl Alcohol) Blend Scaffold with Ciprofloxacin Loaded in Controlled Drug Delivery System. J. Nanosci. Nanotechnol. 2019, 19, 2493–2500. [Google Scholar] [CrossRef]
- Malik, S.; Sundarrajan, S.; Hussain, T. Sustainable Nanofibers in Tissue Engineering and Biomedical Applications. Mater. Des. Processing Commun. 2021, 3(6), 1–22. [Google Scholar] [CrossRef]
- Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [Google Scholar] [CrossRef] [Green Version]
- Canales, D.; Saavedra, M.; Flores, M.T.; Bejarano, J.; Ortiz, J.A.; Orihuela, P.; Alfaro, A.; Pabón, E.; Palza, H.; Zapata, P.A. Effect of Bioglass Nanoparticles on the Properties and Bioactivity of Poly (Lactic Acid) Films. J. Biomed. Mater. Res.-Part A 2020, 108, 2032–2043. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Wang, X.; Xu, X.; Shen, Y.; Aldalbahi, A.; Fetz, A.E.; Bowlin, G.L.; El-Newehy, M.; Mo, X. Electrospinning Nanofiber Scaffolds for Soft and Hard Tissue Regeneration. J. Mater. Sci. Technol. 2020, 59, 243–261. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review. Compos. Sci. Technol. 2010, 70, 1764–1776. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, V.; Gude, M.R.; Calvo, S.; Ureña, A. Efecto de La Adición de Nanoláminas de Grafeno En Las Propiedades de Laminados de Fibra de Carbono y Benzoxacina. Mater. Compuestos 2019, 3, 6–9. [Google Scholar]
- Wahid, F.; Khan, T.; Hussain, Z.; Ullah, H. Nanocomposite Scaffolds for Tissue Engineering; Properties, Preparation and Applications. In Applications of Nanocomposite Materials in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 701–735. [Google Scholar]
- Conoscenti, G.; Carfì Pavia, F.; Ciraldo, F.E.; Liverani, L.; Brucato, V.; La Carrubba, V.; Boccaccini, A.R. In Vitro Degradation and Bioactivity of Composite Poly-l-Lactic (PLLA)/Bioactive Glass (BG) Scaffolds: Comparison of 45S5 and 1393BG Compositions. J. Mater. Sci. 2018, 53, 2362–2374. [Google Scholar] [CrossRef]
- Day, R.M.; Boccaccini, A.R.; Shurey, S.; Roether, J.A.; Forbes, A.; Hench, L.L.; Gabe, S.M. Assessment of Polyglycolic Acid Mesh and Bioactive Glass for Soft-Tissue Engineering Scaffolds. Biomaterials 2004, 25, 5857–5866. [Google Scholar] [CrossRef]
- Durgalakshmi, D.; Balakumar, S. Analysis of Solvent Induced Porous PMMA–Bioglass Monoliths by the Phase Separation Method–Mechanical and in Vitro Biocompatible Studies. Phys. Chem. Chem. Phys. 2015, 17, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, M.; Dutra Zanotto, E. History and Trends of Bioactive Glass-ceramics. J. Biomed. Mater. Res. Part A 2016, 104, 1231–1249. [Google Scholar] [CrossRef]
- Bellucci, D.; Chiellini, F.; Ciardelli, G.; Gazzarri, M.; Gentile, P.; Sola, A.; Cannillo, V. Processing and Characterization of Innovative Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2012, 23, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Jung, S.; Day, D.; Neidig, K.; Dusevich, V.; Eick, D.; Bonewald, L. Evaluation of Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in Critical-sized Rat Calvarial Defects Implanted with Bioactive Glass Scaffolds. J. Biomed. Mater. Res. Part A 2012, 100, 3267–3275. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive Glass in Tissue Engineering. Acta Biomater. 2011, 7, 2355–2373. [Google Scholar] [CrossRef] [Green Version]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Filho, O.P.; La Torre, G.P.; Hench, L.L. Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Jpn. Soc. Biomater. 1996, 30, 509–514. [Google Scholar] [CrossRef]
- Clupper, D.C.; Hench, L.L. Crystallization Kinetics of Tape Cast Bioactive Glass 45S5. J. Non-Cryst. Solids 2003, 318, 43–48. [Google Scholar] [CrossRef]
- Li, P.; Yang, Q.; Zhang, F.; Kokubo, T. The Effect of Residual Glassy Phase in a Bioactive Glass-Ceramic on the Formation of Its Surface Apatite Layerin Vitro. J. Mater. Sci. Mater. Med. 1992, 3, 452–456. [Google Scholar] [CrossRef]
- Vert, M.; Li, S.M.; Spenlehauer, G.; Guérin, P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. [Google Scholar] [CrossRef]
- Wu, F.; Wei, J.; Liu, C.; O’Neill, B.; Ngothai, Y. Fabrication and Properties of Porous Scaffold of Zein/PCL Biocomposite for Bone Tissue Engineering. Compos. Part B Eng. 2012, 43, 2192–2197. [Google Scholar] [CrossRef]
- Chen, Y.; Mak, A.F.T.; Wang, M.; Li, J.; Wong, M.S. PLLA Scaffolds with Biomimetic Apatite Coating and Biomimetic Apatite/Collagen Composite Coating to Enhance Osteoblast-like Cells Attachment and Activity. Surf. Coat. Technol. 2006, 201, 575–580. [Google Scholar] [CrossRef]
- Hong, Z.; Reis, R.L.; Mano, J.F. Preparation and in Vitro Characterization of Scaffolds of Poly(l-Lactic Acid) Containing Bioactive Glass Ceramic Nanoparticles. Acta Biomater. 2008, 4, 1297–1306. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Huang, L.C.; Shen, P. Na2CaSi2O6-P2O5 Based Bioactive Glasses. Part 1: Elasticity and Structure. J. Non-Cryst. Solids 2005, 351, 3195–3203. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Chen, Q.; Lefebvre, L. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics. Faraday Discuss. 2007, 136, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Glass, B.; Engineering, T.; Ranga, N.; Gahlyan, S.; Duhan, S. Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2020, 20, 2465–2472. [Google Scholar] [CrossRef]
- Krikorian, V.; Pochan, D.J. Crystallization Behavior of Poly(L-Lactic Acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 2005, 38, 6520–6527. [Google Scholar] [CrossRef]
- Blaker, J.J.; Nazhat, S.N.; Maquet, V.; Boccaccini, A.R. Long-Term in Vitro Degradation of PDLLA/Bioglass® Bone Scaffolds in Acellular Simulated Body Fluid. Acta Biomater. 2011, 7, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Nishida, H.; Hoshihara, S.; Shirai, Y.; Tokiwa, Y.; Endo, T. Pyrolysis Kinetics of Poly (L-Lactide) with Carboxyl and Calcium Salt End Structures. Polym. Degrad. Stab. 2003, 79, 547–562. [Google Scholar] [CrossRef]
- Mao, D.; Li, Q.; Li, D.; Chen, Y.; Chen, X.; Xu, X. Fabrication of 3D Porous Poly (Lactic Acid)-Based Composite Scaffolds with Tunable Biodegradation for Bone Tissue Engineering. Mater. Des. 2018, 142, 1–10. [Google Scholar] [CrossRef]
- Schick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611. [Google Scholar] [CrossRef] [PubMed]
- Loyo, C.; Moreno-Serna, V.; Fuentes, J.; Amigo, N.; Sepúlveda, F.A.; Ortiz, J.A.; Rivas, L.M.; Ulloa, M.T.; Benavente, R.; Zapata, P.A. PLA/CaO Nanocomposites with Antimicrobial and Photodegradation Properties. Polym. Degrad. Stab. 2022, 197, 109865. [Google Scholar] [CrossRef]
- Epp, J. X-ray Diffraction (XRD) Techniques for Materials Characterization; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081000571. [Google Scholar]
- Lefebvre, L.; Gremillard, L.; Chevalier, J.; Zenati, R.; Bernache-Assolant, D. Sintering Behaviour of 45S5 Bioactive Glass. Acta Biomater. 2008, 4, 1894–1903. [Google Scholar] [CrossRef]
- Rose, A.S.J.L.; Selvarajan, P.; Perumal, S. Growth, Structural, Spectral, Mechanical, Thermal and Dielectric Characterization of Phosphoric Acid Admixtured l-Alanine (PLA) Single Crystals. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2011, 81, 270–275. [Google Scholar] [CrossRef]
- Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef]
- Schwartz, Z.; Boyan, B.D. Underlying Mechanisms at the Bone–Biomaterial Interface. J. Cell. Biochem. 1994, 56, 340–347. [Google Scholar] [CrossRef]
- Tu, C.; Cai, Q.; Yang, J.; Wan, Y.; Bei, J.; Wang, S. The Fabrication and Characterization of Poly (Lactic Acid) Scaffolds for Tissue Engineering by Improved Solid–Liquid Phase Separation. Polym. Adv. Technol. 2003, 14, 565–573. [Google Scholar] [CrossRef]
- Adams, L.K.; Lyon, D.Y.; Alvarez, P.J.J. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Res. 2006, 40, 3527–3532. [Google Scholar] [CrossRef]
- Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and Their Antimicrobial Properties against Pathogens Including Bacteria, Fungi, Parasites and Viruses. Microb. Pathog. 2018, 123, 505–526. [Google Scholar] [CrossRef]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Possolli, N.M.; Da Silva, D.F.; Vieira, J.; Maurmann, N.; Pranke, P.; Demétrio, K.B.; Angioletto, E.; Montedo, O.R.K.; Arcaro, S. Dissolution, bioactivity behavior, and cytotoxicity of 19. 58Li2O 11. 10ZrO2 69. 32SiO2 glass–ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 67–78. [Google Scholar] [CrossRef]
- Atkinson, I.; Anghel, E.M.; Petrescu, S.; Seciu, A.M.; Stefan, L.M.; Mocioiu, O.C.; Predoana, L.; Voicescu, M.; Somacescu, S.; Culita, D. Cerium-Containing Mesoporous Bioactive Glasses: Material Characterization, in Vitro Bioactivity, Biocompatibility and Cytotoxicity Evaluation. Microporous Mesoporous Mater. 2019, 276, 76–88. [Google Scholar] [CrossRef]
- Spirandeli, B.R.; Ribas, R.G.; Amaral, S.S.; Martins, E.F.; Esposito, E.; Vasconcellos, L.M.R.; Campos, T.M.B.; Thim, G.P.; Trichês, E.S. Incorporation of 45S5 Bioglass via Sol-Gel in β-TCP Scaffolds: Bioactivity and Antimicrobial Activity Evaluation. Mater. Sci. Eng. C 2021, 131, 112453. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly (Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A. Three-Dimensional Printed PLA Scaffold and Human Gingival Stem Cell-Derived Extracellular Vesicles: A New Tool for Bone Defect Repair. Stem Cell Res. Ther. 2018, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gritsch, L.; Perrin, E.; Chenal, J.-M.; Fredholm, Y.; Maçon, A.L.; Chevalier, J.; Boccaccini, A.R. Combining Bioresorbable Polyesters and Bioactive Glasses: Orthopedic Applications of Composite Implants and Bone Tissue Engineering Scaffolds. Appl. Mater. Today 2021, 22, 100923. [Google Scholar] [CrossRef]
- Bahremandi-Toloue, E.; Mohammadalizadeh, Z.; Mukherjee, S.; Karbasi, S. Incorporation of Inorganic Bioceramics into Electrospun Scaffolds for Tissue Engineering Applications: A Review. Ceram. Int. 2021, 48(9), 8803–8837. [Google Scholar] [CrossRef]
- Rahmati, M.; Mozafari, M. Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomater. Sci. Eng. 2019, 6, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Wang, F.; Weng, Z.; Song, H.; Fang, Y.; Tang, X.; Shen, X. A Wheat Germ-Derived Peptide YDWPGGRN Facilitates Skin Wound-Healing Processes. Biochem. Biophys. Res. Commun. 2020, 524, 943–950. [Google Scholar] [CrossRef]
- Sheikh, Z.; Brooks, P.J.; Barzilay, O.; Fine, N.; Glogauer, M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials 2015, 8, 5671–5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharabi, M. Structural Mechanisms in Soft Fibrous Tissues: A Review. Front. Mater. 2022, 8, 793647. [Google Scholar] [CrossRef]
- Kapogianni, E.; Alkildani, S.; Radenkovic, M.; Xiong, X.; Krastev, R.; Stöwe, I.; Bielenstein, J.; Jung, O.; Najman, S.; Barbeck, M. The Early Fragmentation of a Bovine Dermis-Derived Collagen Barrier Membrane Contributes to Transmembraneous Vascularization—A Possible Paradigm Shift for Guided Bone Regeneration. Membranes 2021, 11, 185. [Google Scholar] [CrossRef]
- Kwee, B.J.; Mooney, D.J. Manipulating the Intersection of Angiogenesis and Inflammation. Ann. Biomed. Eng. 2015, 43, 628–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [Google Scholar] [CrossRef]
- Alnojeidi, H.; Kilani, R.T.; Ghahary, A. Evaluating the Biocompatibility of an Injectable Wound Matrix in a Murine Model. Gels 2022, 8, 49. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Klopfleisch, R.; Jung, F. The Pathology of the Foreign Body Reaction against Biomaterials. J. Biomed. Mater. Res. Part A 2017, 105, 927–940. [Google Scholar] [CrossRef]
- Carvalho, J.R.G.; Conde, G.; Antonioli, M.L.; Santana, C.H.; Littiere, T.O.; Dias, P.P.; Chinelatto, M.A.; Canola, P.A.; Zara, F.J.; Ferraz, G.C. Long-Term Evaluation of Poly (Lactic Acid)(PLA) Implants in a Horse: An Experimental Pilot Study. Molecules 2021, 26, 7224. [Google Scholar] [CrossRef]
- Maluf-Meiken, L.C.V.; Silva, D.R.M.; Duek, E.A.R.; Alberto-Rincon, M.C. Morphometrical Analysis of Multinucleated Giant Cells in Subdermal Implants of Poly-Lactic Acid in Rats. J. Mater. Sci. Mater. Med. 2006, 17, 481–485. [Google Scholar] [CrossRef]
- Minata, M.K.; Motta, A.C.; Barbo, M.D.L.P.; Rincon, M.D.C.A.; Duek, E.A. Estudo Da Biocompatibilidade Da Blenda de Poli (L-Ácido Láctico)/Policaprolactona-Triol. Polímeros 2013, 23, 242–247. [Google Scholar] [CrossRef]
- Gueldenpfennig, T.; Houshmand, A.; Najman, S.; Stojanovic, S.; Korzinskas, T.; Smeets, R.; Gosau, M.; Pissarek, J.; Emmert, S.; Jung, O. The Condensation of Collagen Leads to an Extended Standing Time and a Decreased Pro-Inflammatory Tissue Response to a Newly Developed Pericardium-Based Barrier Membrane for Guided Bone Regeneration. In Vivo 2020, 34, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.; Ochoa, A.; Ulloa, M.T.; Alvarez, E.; Canales, D.; Zapata, P.A. Poly (Lactic Acid)/TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater. Sci. Eng. C 2015, 57, 314–320. [Google Scholar] [CrossRef]
- Shelembe, B.; Mahlangeni, N.; Moodley, R. Biosynthesis and Bioactivities of Metal Nanoparticles Mediated by Helichrysum Aureonitens. J. Anal. Sci. Technol. 2022, 13, 1–11. [Google Scholar] [CrossRef]
Sample | Tg (°C) | TCC (°C) | Tm1 (°C) | Tm2 (°C) | Χc (%) | T10 (°C) | Tmax (°C) |
---|---|---|---|---|---|---|---|
Neat PLA | 53 | 107 | 141 | 150 | 7.8 | 224 | 356 |
PLA/n-BGs 5 | 63 | NP | NP | 154 | 5.0 | 323 | 358 |
PLA/n-BGs 10 | 64 | NP | NP | 154 | 5.8 | 323 | 356 |
Sample | Young’s Modulus (N/mm2) (MPa) * | Compression Max (MPa) * | Deformation Max (%) * |
---|---|---|---|
Neat PLA | 1.49 b ± 0.44 | 1.13 a ± 0.02 | 123.79 b ± 50.30 |
PLA/n-BGs 5 | 2.85 a ± 0.76 | 0.99 a ± 0.15 | 38.46 a ± 0.56 |
PLA/n-BGs 10 | 2.19 ab ± 0.33 | 0.87 a ± 0.17 | 62.37 b ± 9.61 |
Strains | Control | 2.5 w/v% | 5 w/v% | 10 w/v% | 15 w/v% | 20 w/v% | |||
---|---|---|---|---|---|---|---|---|---|
TTC | TTC | TTC | TTC | Log CFU mL −1 | TTC | Log CFU mL −1 | TTC | Log CFU mL −1 | |
Bacillus cereus | +++ | + | + | − | 1.3 ± 0.3 | − | 1.1 ± 0.1 | − | 0 |
Staphylococcus aureus | +++ | + | + | + | − | 1.7 ± 0.4 | − | 0.5 ± 0.1 | |
Escherichia coli | +++ | + | + | + | − | 1.4 ± 0.3 | − | 0.3 ± 0.1 | |
Vibrio parahaemolyticus | +++ | ++ | + | + | + | − | 0.3 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.; Navia-Porras, D.P.; Delgado-Ospina, J.; Chaur, M.N.; Hernández, J.H.M.; Grande-Tovar, C.D. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022, 27, 3640. https://doi.org/10.3390/molecules27113640
Castro JI, Valencia Llano CH, Tenorio DL, Saavedra M, Zapata P, Navia-Porras DP, Delgado-Ospina J, Chaur MN, Hernández JHM, Grande-Tovar CD. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules. 2022; 27(11):3640. https://doi.org/10.3390/molecules27113640
Chicago/Turabian StyleCastro, Jorge Iván, Carlos Humberto Valencia Llano, Diego López Tenorio, Marcela Saavedra, Paula Zapata, Diana Paola Navia-Porras, Johannes Delgado-Ospina, Manuel N. Chaur, José Hermínsul Mina Hernández, and Carlos David Grande-Tovar. 2022. "Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications" Molecules 27, no. 11: 3640. https://doi.org/10.3390/molecules27113640
APA StyleCastro, J. I., Valencia Llano, C. H., Tenorio, D. L., Saavedra, M., Zapata, P., Navia-Porras, D. P., Delgado-Ospina, J., Chaur, M. N., Hernández, J. H. M., & Grande-Tovar, C. D. (2022). Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules, 27(11), 3640. https://doi.org/10.3390/molecules27113640