Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Garlic Material
4.2. Obtaining the Size of Garlic Cloves
4.3. Obtention of Organic Content
4.4. Extraction and Analysis of Ash
4.4.1. Obtaining Ashes
4.4.2. Acid Digestion of the Sample
4.4.3. Quantitative Analysis by Inductively Coupled Plasma Emission Spectrometry (ICP)
4.5. Extraction and Analysis of the Fatty Acid Composition
4.5.1. Moisture Content and Volatile Compounds
4.5.2. Fat Content
4.5.3. Fatty Acid Profile
4.6. Obtention of Extracts
4.6.1. Preparation of the Sample to Obtain the Extracts
4.6.2. Continuous Extraction
4.7. Phytochemical Analysis
4.7.1. Determination of Saponins
Foam Test
Libermann–Burchard Test
4.7.2. Determination of Alkaloids
4.7.3. Determination of Sterols and Triterpenes
Salkowski’s Test
4.7.4. Determination of Tannins
Ferric Chloride Test
Vanillin Test
Catechin Test
4.7.5. Determination of Flavonoids
Constantinesco Test
Shinoda Test
4.8. Determination of Antioxidants
4.8.1. Extraction Procedure of Polyphenols
4.8.2. Determination of Total Phenolic Compounds
4.8.3. Determination of Antioxidant Activity by DPPH Radical
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kamenetsky, R.; Rabinowitch, H.D. The Genus Allium: A developmental and horticultural analysis. Hortic. Rev. 2006, 32, 329–378. [Google Scholar]
- Barazani, O.; Dudai, N.; Khadka, U.R.; Golan-Goldhirsh, A. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere 2004, 57, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Kim, B.; Lee, S.; Park, J.; Shin, D.; Yoo, M. Profiling of organosulphur compounds using HPLCPDA and GC/MS system and antioxidant activities in hooker chive (Allium hookeri). Nat. Prod. Res. 2016, 30, 2798–2804. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Segovia, K.G.; Díaz-García, E.J.; Méndez-López, M.D.; Pina-Canseco, M.S.; Pérez-Santiago, A.D.; Sánchez-Medina, M.A. Efecto de extractos crudos de ajo (Allium sativum) sobre el desarrollo in vitro de Aspergillus parasiticus y Aspergillus niger. Polibotánica 2019, 47, 99–111. [Google Scholar] [CrossRef]
- López Luengo, M.T. El ajo: Propiedades farmacológicas e indicaciones terapéuticas. Offarm Farm. Soc. 2007, 26, 78–81. [Google Scholar]
- Guillamón, E. Efecto de compuestos fitoquímicos del género Allium sobre el sistema inmune y la respuesta inflamatoria. Ars Pharm. 2018, 59, 185–196. [Google Scholar] [CrossRef]
- Miao, Q.; Wang, R.; Bai, D.; Xue, X.; Xu, J.; Sun, X.; Liu, L. Antiatherosclerosis Properties of Total Saponins of Garlic in Rats. Evid. Based Complement. Altern. Med. 2020, 2020, 3683659. [Google Scholar] [CrossRef]
- Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R. In vitro and cryopreservation techniques for conservation of Snow mountain. Methods Mol. Biol. 2016, 1391, 335–346. [Google Scholar] [CrossRef]
- Rukmankesh, M.; Jasrotia, R.S.; Mahajan, A.; Sharma, D.; Asif, M.; Kaul, S.; Dhar, M.K. Transcriptome analysis of Snow mountain garlic for unraveling the organosulfur metabolic pathway. Genomics 2020, 1, 99–107. [Google Scholar] [CrossRef]
- Ramírez-Concepcióna, H.R.; Castro-Velascoa, L.N.; Martínez-Santiago, E. Efectos Terapéuticos del Ajo (Allium sativum). Salud Adm. 2016, 3, 39–47. [Google Scholar]
- Iciek, M.; Kwiecien, I.; Wlodek, L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 2009, 50, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.J.; Kang, J.R.; Woo, M.S.; Kang, D.; Shin, J.H. Alterations in the Physicochemical Properties and Antioxidant Activity during Aging of Stored Raw Garlic. Foods 2022, 11, 1390. [Google Scholar] [CrossRef]
- Bedrníček, J.; Laknerová, I.; Lorenc, F.; de Moraes, P.P.; Jarošová, M.; Samková, E.; Tříska, J.; Vrchotová, N.; Kadlec, J.; Smetana, P. The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic. Foods 2021, 10, 2703. [Google Scholar] [CrossRef]
- Labuza, T.P.; Tannenbaum, S.R.; Karel, M. Water content and stability of lowmoisture and intermediate-moisture foods. Food Tech. 1970, 24, 543–550. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums, 2nd ed.; CABI: Wallingford, UK, 2008. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, 16th ed.; Editorial Pirámide; The Christian Literature Company: New York, NY, USA, 2013. [Google Scholar]
- Seo, Y.J.; Gweon, O.C.; Im, J.; Lee, Y.M.; Kang, M.J.; Kim, J.I. Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in model of type 2 diabetes mellitus. Prev. Nutr. Food Sci. 2009, 14, 1–7. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2012. [Google Scholar]
- Cameroni, G. Cadenas Alimentarias: Cadena del Ajo; Ministerio de Agricultura, Ganadería y Pesca de la Nación, Subsecretaría de Valor Agregado y Nuevas Tecnologías: Buenos Aires, Argentina, 2012. [Google Scholar]
- Singh, V.; Chauhan, G.; Krishan, P.; Shri, R. Allium schoenoprasum L.: A review of phytochemistry, pharmacology and future directions. Nat. Prod. Res. 2018, 32, 2202–2216. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.H. Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 2017, 39, 123–128. [Google Scholar] [CrossRef]
- Tang, R.J.; Luan, S. Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Curr. Opin. Plant Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef]
- Wang, W.; Li, A.; Zhang, Z.; Chu, C. Post-translational modifications: Regulation of nitrogen utilization and signaling. Plant Cell Physiol. 2021, 62, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Hacıseferoğulları, H.; Özcan, M.; Demir, F.; Çalişir, S. Some nutritional and technological properties of garlic (Allium sativum L.). J. Food Eng. 2005, 68, 463–469. [Google Scholar] [CrossRef]
- Barnes, J.; Anderson, L.A.; Phillipson, D.J. Herbal Medicines; Pharmaceutical Press: London, UK, 2007. [Google Scholar]
- Ritota, M.; Casciani, L.; Han, B.Z.; Cozzolino, S.; Leita, L.; Sequi, P.; Valentini, M. Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chem. 2012, 135, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Kamanna, V.S.; Chandrasekhara, N. Fatty acid composition of garlic (Allium sativum Linnaeus) lipids. JAOCS 1980, 57, 175–176. [Google Scholar] [CrossRef]
- Carballeira, N.; Betancourt, J.E.; Orellano, E.A.; González, F.A. Total Synthesis and Biological Evaluation of (5Z,9Z)-5,9-Hexadecadienoic Acid, an Inhibitor of Human Topoisomerase I. J. Nat. Prod. 2002, 65, 1715–1718. [Google Scholar] [CrossRef]
- Yuko, Y.; Takada, N.; Koda, Y. Isolation and Identification of an Anti-Bolting Compound, Hexadecatrienoic Acid Monoglyceride, Responsible for Inhibition of Bolting and Maintenance of the Leaf Rosette in Radish Plants. Plant Cell Physiol. 2010, 51, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. Annu. Rev. Phytopathol. 2017, 55, 505–536. [Google Scholar] [CrossRef]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Moraes-Vieira, P.M.; Saghatelian, A.; Kahn, B.B. GLUT4 expression in adipocytes regulates de novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects. Diabetes 2016, 65, 1808–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes Salido, F.; Clemente Fernández, A. Polifenoles de aplicación en farmacia. Ámbito Farm. Fitoter. 2005, 24, 85–94. [Google Scholar]
- Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr. 2006, 136, 716S–725S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, D.A.; Nazareno, M.A.; Fusari, C.M.; Camargo, A.B. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem. 2017, 220, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Nuutila, A.M.; Puupponen-Pimiä, R.; Aarni, M.; Oksman-Caldentey, K.M. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kang, O.-J.; Gweon, O.-C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Ichikawa, M.; Yoshida, J.; Ide, N.; Sasaoka, T.; Yamaguchi, H.; Ono, K. Tetrahydro-β-carboline derivatives in aged garlic extract show antioxidant properties. J. Nutr. 2006, 136, 726S–731S. [Google Scholar] [CrossRef] [Green Version]
- Emir, C.; Coban, G.; Emir, A. Metabolomics profiling, biological activities, and molecular docking studies of elephant garlic (Allium ampeloprasum L.). Process Biochem. 2022, 116, 49–59. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kirk, R.S.; Sawyer, R.; Egan, H. Composición y Análisis de Alimentos de Pearson, 2nd ed.; Compañía Editorial Continental S.A. de C.V.: Mexico City, Mexico, 1996. [Google Scholar]
- James, C.S. Analytical Chemistry of Foods; An Aspen Publication: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Robers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Collmer, A.; Ried, J.; Mount, M. Assay Methods for Pectinc Enzymes. Methods Enzymol. 1988, 161, 333–334. [Google Scholar] [CrossRef]
- Link, D.D.; Kingston, H.M.; Walter, P.J. Development and Validation of the New EPA Microwave-Assisted Leach Methods 3051A and 3015A. Environ. Sci. Technol. 1998, 32, 3628–3632. [Google Scholar] [CrossRef]
- Rocha Uribe, A.; Hernández, E. Synthesis of linoleic conjugated acid by alkali isomerization using propylene glycol as solvent. Rev. Mex. Ing. Química 2004, 3, 193–200. [Google Scholar]
- Rivera-Roldán, V.M. Identificación y Evaluación de la Actividad Antigúngica de Extractos Orgánicos del Ajo Snow Mountain en Diferentes Cepas del Género Candida. Bachelor’s Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico, November 2021. [Google Scholar]
- Angulo, G.K. Aprovechamiento como Tensioactivo de las Saponinas del Pericarpio de los Frutos Sapindus saponaria L. para Formular Jabones más Amigables con la Piel. Bachelor’s Thesis, Universidad de Iberoamérica, Mexico City, Mexico, 2017. [Google Scholar]
- Bermejo de Zaa, A.Á.; Pereira, C.S.; Cintra, J.M.; Morales, T.G. Determinación de parámetros químico-físico de las tinturas al 20% obtenidas de las hojas, tallos y frutos de Melia azedarach L. (Pursiana). Rev. Habanera Cienc. Médicas 2014, 13, 670–680. [Google Scholar]
- Coy, B.C.; Parra, J.; Cuca, S.L. Caracterización química del aceite esencial e identificación preliminar de metabolitos secundarios en hojas de la especie Raputia heptaphylia (rutaceae). Elementos 2014, 4, 31–39. [Google Scholar]
- Domínguez, X.A. Metodos de Investigación Fitoquímica; Limusa: Mexico City, Mexico, 1985. [Google Scholar]
- Martínez, V.J. Evaluación de la Actividad Antioxidante de Extractos Orgánicos de Semillas de Heliocarpus terebinthinaceus. Bachelor’s Thesis, Universidad Tecnológica de la Mixteca, Oaxaca, Mexico, 2007. [Google Scholar]
- Sánchez, P.L. Estudio de Antioxidantes en Almendras. Master’s Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2018. [Google Scholar]
- Soto, G.M.; Rolsales, C.M. Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenolicos y la capacidad antioxidante de extractos de corteza. Maderas Cienc. Tecnol. 2016, 18, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Ovando-Martinez, M.; Sáyago-Ayerdi, S.; Agama-Acevedo, E.; Goñi, I.; Bello-Pérez, L.A. Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chem. 2009, 113, 121–126. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raentos, R.M. Analysis of total phenols and another oxidation substrates and antioxidants by means folin-coicalteu. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
Units | Size | Height (cm) | Width (cm) | Base (cm) |
---|---|---|---|---|
41 | Big | 1.3–1.5 | 1.5–2.0 | 1.5–2.5 |
65 | Medium | 0.7–1.2 | 1.0–1.2 | 1.2–1.5 |
37 | Small | 0.8–0.9 | 0.7–0.8 | 0.7–1.0 |
COMPONENT | |
---|---|
Humidity (%) | 61.5628 ± 0.5411 a |
aw | 0.9817 ± 0.0081 a |
Carbohydrates (%) | 46.7 ± 0.0024 b |
Lipids (%) | 0.5 ± 0.0036 b |
Protein (%) | 0.5 ± 0.0029 b |
Ashes (%) | 1.2 ± 0.004 b |
Crude energy (kcal/100 g) | 193.3 (410.7 in A. sativum L.) |
pH | 6.5 ± 0.002 b |
Element | Concentration (g/kg) | Element | Concentration (mg/kg) |
---|---|---|---|
Potassium (K) | 287.46 | Copper (Cu) | 84.80 |
Phosphorus (P) | 91.58 | Arsenic (As) | <LDM |
Magnesium (Mg) | 21.20 | Cobalt (Co) | <LDM |
Calcium (Ca) | 6.16 | Nickel (Ni) | <LDM |
Sodium (Na) | 1.04 | Plumb (Pb) | <LDM |
Zinc (Zc) | 0.51 | Mercury (Hg) | <LDM |
Iron (Fe) | 0.42 | Selenium (Se) | <LDM |
Manganese (Mn) | 0.31 | Cadmium (Cd) | <LDM |
Fatty Acid | Name | % (SD) |
---|---|---|
C10:0 | Decanoic acid | 5.00 (0.41) |
C13:0 | Tridecanoic acid | 5.34 (0.32) |
C15:0 | Pentadecanoic acid | 3.54 (0.09) |
C16:0 | Hexadecanoic acid | 4.22 (0.65) |
C16:2 or C16:3 | Hexadecadienoic acid or Hexadecatrienoic acid | 53.50 (3.56) |
C18:0 | Octadecanoic acid | 2.05 (0.25) |
C18:1 | Octadecenoic acid | 3.10 (0.22) |
C18:2 | Octadecadienoic acid | 10.93 (1.10) |
C18:3 | Octadecatrienoic acid | 1.69 (0.20) |
C20:1 | Eicosanoic acid | 2.19 (0.21) |
C20:2 | Eicosadienoic acid | 3.44 (0.18) |
C20:3 | Eicosatrienoic acid | 5.00 (0.47) |
Saturated | 20.15 | |
Monounsaturated | 4.24 | |
Polyunsaturated | 75.61 |
Metabolite Type | Reaction | Extracts | ||
---|---|---|---|---|
HxE | CHCl3E | EtE | ||
Saponins | Foam | + | ++ | +++ |
Libermann–Burchard | + | ++ | +++ | |
Alkaloids | Dragendorff | − | ++ | +++ |
Triterpenes | Salkowski | − | + | + |
Tannins | Ferric chloride | + | + | + |
Vanillin | + | +++ | +++ | |
Catechin | − | + | ++ | |
Flavonoids | Constantinesco | − | ++ | +++ |
Shinoda | − | + | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terán-Figueroa, Y.; de Loera, D.; Toxqui-Terán, A.; Montero-Morán, G.; Saavedra-Leos, M.Z. Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules 2022, 27, 3712. https://doi.org/10.3390/molecules27123712
Terán-Figueroa Y, de Loera D, Toxqui-Terán A, Montero-Morán G, Saavedra-Leos MZ. Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules. 2022; 27(12):3712. https://doi.org/10.3390/molecules27123712
Chicago/Turabian StyleTerán-Figueroa, Yolanda, Denisse de Loera, Alberto Toxqui-Terán, Gabriela Montero-Morán, and María Zenaida Saavedra-Leos. 2022. "Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic" Molecules 27, no. 12: 3712. https://doi.org/10.3390/molecules27123712
APA StyleTerán-Figueroa, Y., de Loera, D., Toxqui-Terán, A., Montero-Morán, G., & Saavedra-Leos, M. Z. (2022). Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules, 27(12), 3712. https://doi.org/10.3390/molecules27123712