Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador
Abstract
:1. Introduction
2. Results
2.1. Physical Properties of the EO
2.2. Chemical Composition of the EO
2.3. Enantiomeric Analysis of the EO
2.4. Cholinesterase Inhibition Assay of the EO
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation of the Essential Oil
4.3. Physical Properties of the Essential Oil
4.4. Chemical Composition of the Essential Oil
4.5. Identification of the EO Components
4.6. Enantioselective Analysis
4.7. Cholinesterase (ChE) Inhibition Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Branco, C.S.; Rodrigues, T.S.; Lima, E.D.; Calloni, C.; Scola, G.; Salvador, M. Chemical constituents and biological activities of Araucaria angustifolia (Bertol.) O. Kuntze: A review. J. Org. Inorg. Chem. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.S.; Choudhary, B.A.; Uzair, M.; Ijaz, A.S. Phytochemical and ethno-pharmacological review of the genus Araucaria–review. Trop. J. Pharm. Res. 2013, 12, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Rossetto-Harris, G.; Wilf, P.; Escapa, I.H.; Andruchow-Colombo, A. Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America. Am. J. Bot. 2020, 107, 806–832. [Google Scholar] [CrossRef] [PubMed]
- Kranitz, M.L.; Biffin, E.; Clark, A.; Hollingsworth, M.L.; Ruhsam, M.; Gardner, M.F. Evolutionary diversification of New Caledonian Araucaria. PLoS ONE 2014, 9, e110308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talaat, A.N.; Ebada, S.S.; Labib, R.M.; Esmat, A.; Youssef, F.S.; Singab, A.N.B. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J. Ethnopharmacol. 2018, 226, 44–47. [Google Scholar] [CrossRef]
- Céspedes, C.L.; Avila, J.G.; Garcıa, A.M.; Becerra, J.; Flores, C.; Aqueveque, P.; Silva, M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Naturforsch. 2006, 61, 35–43. [Google Scholar] [CrossRef]
- Patial, P.K.; Cannoo, D.S. First-time comparative investigation on Araucaria columnaris (G. Forst.) Hook. leaves: Extraction techniques, phytochemicals, medicinal activities, and DFT study. Med. Chem. Res. 2020, 30, 196–214. [Google Scholar] [CrossRef]
- Frezza, C.; Sciubba, F.; De Vita, D.; Toniolo, C.; Foddai, S.; Tomassini, L.; Petrucci, R.; Bianco, A.; Serafini, M. Non-volatile compounds from Araucaria columnaris (G. Forst.) Hook leaves, Biochem. Syst. Ecol. 2022, 103, 104430. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of Lamiaceae. Stud. Nat. Prod. Chem. 2019, 62, 125–178. [Google Scholar]
- Brophy, J.J.; Goldsack, R.J.; Wu, M.Z.; Fookes, C.J.R.; Forster, P.I. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem. Syst. Ecol. 2000, 28, 563–578. [Google Scholar] [CrossRef]
- Patial, P.K.; Cannoo, D.S. Evaluation of volatile compounds, phenolic acids, antioxidant potential and DFT study of essential oils from different parts of Araucaria columnaris (G. Forst.) Hook. from India. Food Chem. Toxicol. 2020, 141, 111376. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M.; et al. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae Family—A Review. Plants 2020, 9, 888. [Google Scholar] [CrossRef]
- Da Costa, F.J.O.G.; Leivas, C.L.; Waszczynskyj, N.; De Godoi, R.C.B.; Helm, C.V.; Colman, T.A.D.; Schnitzler, E. Characterisation of native starches of seeds of Araucaria angustifolia from four germplasm collections. Thermochim. Acta 2013, 565, 172–177. [Google Scholar] [CrossRef]
- Datta, P.K.; Figueroa, M.O.; Lajolo, F.M. Purification and characterization of two major lectins from Araucaria brasiliensis syn. Araucaria angustifolia seeds (pinhao). Plant Physiol. 1991, 97, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Bello-Pérez, L.A.; García-Suárez, F.J.; Méndez-Montealvo, G.; Oliveira do Nascimento, J.R.; Lajolo, F.M.; Cordenunsi, B.R. Isolation and characterization of starch from seeds of Araucaria brasiliensis: A novel starch for application in food industry. Starch-Stärke 2006, 58, 283–291. [Google Scholar] [CrossRef]
- Peralta, R.M.; Koehnlein, E.A.; Oliveira, R.F.; Correa, V.G.; Corrêa, R.C.; Bertonha, L.; Ferreira, I.C. Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends Food Sci. Technol. 2016, 54, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Khan, S.T.; Zargaham, M.K.; Khan, A.U.; Khan, S.; Hussain, A.; Uddin, J.; Khan, A.; Al-Harrasi, A. Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase. Biomed. Pharmacother. 2021, 139, 111609. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A. Determination of anti-Alzheimer’s disease activity of selected plant ingredients. Molecules 2022, 27, 3222. [Google Scholar] [CrossRef]
- Rashed, A.A.; Rahman, A.A.Z.; Rathi, D.N.G. Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: A review. Molecules 2021, 26, 1107. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M.A.; Ahmad, W.; Shah, M.R.; Imran, M.; Ahmad, S. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals’ properties of essential oils from Polygonum Hydropiper L: A preliminary anti-Alzheimer’s study. Lipids Health Dis. 2015, 14, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Orhan, I.; Kartal, M.; Şener, B. Activity of essential oils and individual components against acetyl and butyrylcholinesterase. Z. Naturforsch. 2008, 63, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.; Bec, N.; Calva, J.; Ramírez, J.; Andrade, J.M.; Larroque, C.; Vidari, G.; Armijos, C. Chemical composition and anticholinesterase activity of the essential oil from the Ecuadorian plant Salvia pichinchensis Benth. Rec. Nat. Prod. 2020, 14, 276–285. [Google Scholar] [CrossRef]
- Armijos, C.; Matailo, A.; Bec, N.; Salinas, M.; Aguilar, G.; Solano, N.; Calva, J.; Ludeña, C.; Larroque, C.; Vidari, G. Chemical composition and selective BuChE inhibitory activity of the essential oils from aromatic plants used to prepare the traditional Ecuadorian beverage horchata lojana. J. Ethnopharmacol. 2020, 263, 113–162. [Google Scholar] [CrossRef] [PubMed]
- Matailo, A.; Bec, N.; Calva, J.; Ramírez, J.; Andrade, J.M.; Larroque, C.; Vidari, G.; Armijos, C. Selective BuChE inhibitory activity, chemical composition, and enantiomer content of the volatile oil from the Ecuadorian plant Salvia brownie. Rev. Bras. Farmacogn. 2019, 29, 749–754. [Google Scholar] [CrossRef]
- Calva, J.; Bec, N.; Gilardoni, G.; Larroque, C.; Cartuche, L.; Bicchi, C.; Montesinos, J.V. Acorenone B: AChE and BChE inhibitor as a major compound of the essential oil distilled from the Ecuadorian species Niphogeton dissecta (Benth.) JF Macbr. Pharmaceuticals 2017, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Villalta, G.; Salinas, M.; Calva, J.; Bec, N.; Larroque, C.; Vidari, G.; Armijos, C. Selective BuChE inhibitory activity, chemical composition, and enantiomeric content of the essential oil from Salvia leucantha Cav. collected in Ecuador. Plants 2021, 10, 1169. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas, Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Grujic-Jovanovic, S.; Skaltsa, H.D.; Marin, P.; Sokovic, M. Composition and antibacterial activity of the essential oil of six Stachys species from Serbia. Flavour Fragr. J. 2004, 19, 139–144. [Google Scholar] [CrossRef]
- Paolini, J.; Muselli, A.; Bernardini, A.F.; Bighelli, A.; Casanova, J.; Costa, J. Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr. J. 2007, 22, 479–487. [Google Scholar] [CrossRef]
- Ramírez, J.; Andrade, M.; Vidari, G.; Gilardoni, G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef]
- Tzakou, O.; Couladis, M.; Slavkovska, V.; Mimica-Dukic, N.; Jancic, R. The essential oil composition of Salvia brachyodon Vandas. Flavour Fragr. J. 2003, 18, 2–4. [Google Scholar] [CrossRef]
- Babushok, V.; Linstrom, P.; Zenkevich, I. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, A.; Collin, G.; Garneau, F.X.; Gagnon, H.; Pichette, A. Aromas from Quebec. II. Composition of the essential oil of the rhizomes and roots of Asarum canadense L. J. Ess. Oil Res. 2010, 22, 164–169. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and antimicrobial activity of the essential oil of six Hypericum species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146–152. [Google Scholar] [CrossRef]
- Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z. Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose. Sens. Actuators B Chem. 2011, 160, 964–973. [Google Scholar] [CrossRef]
- Frizzo, C.D.; Serafini, L.A.; Dellacassa, E.; Lorenzo, D.; Moyna, P. Essential oil of Baccharis uncinella DC. from Southern Brazil. Flavour Frag. J. 2001, 16, 286–288. [Google Scholar] [CrossRef]
- Mancini, E.; De Martino, L.; Malova, H.; De Feo, V. Chemical composition and biological activities of the essential oil from Calamintha nepeta plants from the wild in southern Italy. Nat. Prod. Commun. 2013, 8, 139–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheraif, I.; Ben Jannet, H.; Hammami, M.; Khouja, M.L.; Mighri, Z. Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene. Biochem. Syst. Ecol. 2007, 35, 813–820. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Goswami, P.; Verma, S.K.; Chauhan, A.; Darokar, M.P. Chemical composition and antibacterial activity of foliage and resin essential oils of Araucaria cunninghamii Aiton ex D. Don and Araucaria heterophylla (Salisb.) Franco from India. Ind. Crop. Prod. 2014, 61, 410–416. [Google Scholar] [CrossRef]
- Elkady, W.M.; Ayoub, I.M. Chemical profiling and antiproliferative effect of essential oils of two Araucaria species cultivated in Egypt. Ind. Crop. Prod. 2018, 118, 188–195. [Google Scholar] [CrossRef]
- Chen, J.; Lichwa, J.; Chittaranjan, R. Essential oils of selected Hawaiian plants and associated litters. J. Essent. Oil Res. 2007, 19, 276–278. [Google Scholar] [CrossRef]
- Da Cruz, E.d.N.S.; Peixoto, L.d.S.; da Costa, J.S.; Mourão, R.H.V.; do Nascimento, W.M.O.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.; Figueiredo, P.L.B. Seasonal variability of a caryophyllane chemotype essential oil of Eugenia patrisii Vahl occurring in the Brazilian Amazon. Molecules 2022, 27, 2417. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; König, W.A. Enantiomers of sesquiterpene and diterpene hydrocarbons in Araucaria species. Phytochem. Anal. 2000, 11, 99–105. [Google Scholar] [CrossRef]
- Betzenbichler, G.; Huber, L.; Kräh, S.; Morkos, M.L.; Siegle, A.; Trapp, O. Chiral stationary phases and applications in gas chromatography. Chirality 2022, 34, 732–759. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
DB5-ms | HP-INNOWax | ||||||||
---|---|---|---|---|---|---|---|---|---|
N° | Compound | LRI a | LRI b | X ± SD | Ref. | LRI a | LRI b | X ± SD | Ref. |
1 | α-Pinene | 931 | 932 | 9.99 ± 2.81 | [27] | 1062 | 1066 | 6.32 ± 1.01 | [22] |
2 | Camphene | 948 | 946 | 0.08 ± 0.02 | [27] | - | - | - | |
3 | Sabinene | 971 | 969 | 0.12 ± 0.04 | [27] | 1122 | 1121 | 0.20 ± 0.05 | [23] |
4 | β-Pinene | 976 | 974 | 3.34 ± 0.73 | [27] | 1111 | 1112 | 4.68 ± 1.02 | [23] |
5 | Myrcene | 989 | 988 | 11.02 ± 1.97 | [27] | 1168 | 1170 | 13.41 ± 0.98 | [28] |
6 | α-Phellandrene | 1006 | 1002 | 0.16 ± 0.05 | [27] | - | - | - | |
7 | α-Terpinene | 1016 | 1014 | 0.07 ± 0.02 | [27] | 1176 | 1185 | 0.06 ± 0.01 | [29] |
8 | β-Phellandrene | 1030 | 1025 | 1.90 ± 0.39 | [27] | 1209 | 1210 | 1.25 ± 0.27 | [30] |
9 | γ-Terpinene | 1057 | 1054 | 0.08 ± 0.01 | [27] | 1244 | 1245 | 0.11 ± 0.02 | [31] |
10 | Terpinolene | 1084 | 1086 | 0.07 ± 0.02 | [27] | 1281 | 1280 | 0.11 ± 0.03 | [30] |
11 | Aromadendrene | 1374 | 1374 | 0.07 ± 0.03 | [27] | 1594 | 1604 | 0.13 ± 0.03 | [32] |
12 | Guaia-6,9-diene | 1436 | 1439 | 0.07 ± 0.03 | [27] | 1597 | 1594 | 0.15 ± 0.03 | [33] |
13 | γ-Muurolene | 1440 | 1442 | 0.07 ± 0.02 | [27] | 1679 | 1676 | 0.18 ± 0.04 | [34] |
14 | Germacrene D | 1473 | 1478 | 1.11 ± 0.13 | [27] | 1698 | 1700 | 1.51 ± 0.12 | [30] |
15 | Viridiflorene | 1479 | 1480 | 0.11 ± 0.05 | [27] | 1685 | 1679 | 0.14 ± 0.03 | [35] |
16 | Bicyclogermacrene | 1489 | 1496 | 3.14 ± 0.21 | [27] | 1725 | 1722 | 4.08 ± 0.38 | [36] |
17 | δ-Cadinene | 1493 | 1500 | 0.15 ± 0.02 | [27] | 1750 | 1750 | 0.29 ± 0.04 | [30] |
18 | β-Copaen-4-α-ol | 1511 | 1513 | 0.18 ± 0.16 | [27] | - | - | - | |
19 | Viridiflorol | 1516 | 1522 | 0.19 ± 0.04 | [27] | 2075 | 2069 | 0.16 ± 0.01 | [37] |
20 | Globulol | 1556 | 1559 | 0.14 ± 0.04 | [27] | 2066 | 2057 | 0.27 ± 0.09 | [37] |
21 | α-Muurolol | 1560 | 1575 | 0.12 ± 0.04 | [27] | - | - | - | |
22 | epi-α-Cadinol | 1567 | 1567 | 0.15 ± 0.02 | [27] | - | |||
23 | Octadec-1-ene | 1574 | 1590 | 0.10 ± 0.03 | [27] | - | - | - | |
24 | Rosa-5,15-diene (Rimuene) | 1592 | 1592 | 5.87 ± 1.01 | [27] | 2240 | 2255 | 8.00 ± 0.24 | [38] |
25 | Beyerene | 1642 | 1644 | 26.08 ± 3.65 | [27] | 2186 | - | 25.78 ± 1.55 | |
26 | Pimaradiene | 1653 | 1638 | 0.24 ± 0.04 | [27] | - | - | - | |
27 | Sandaracopimara-8(14),15-diene | 1795 | 1789 | 4.47 ± 0.84 | [27] | - | - | - | |
28 | Sclarene | 1902 | 1900 | 0.54 ± 0.15 | [27] | 2262 | - | 0.52 ± 0.04 | |
29 | Kaur-15-ene | 1933 | 1933 | 0.60 ± 0.11 | [27] | 2280 | - | 0.76 ± 0.03 | |
30 | 13-epi-Manool oxide | 1939 | 1931 | 2.31 ± 1.07 | [27] | 2360 | 2376 | 2.17 ± 0.16 | [32] |
31 | Kaurene | 1950 | 1948 | 24.86 ± 2.21 | [27] | 2386 | 2399 | 29.24 ± 0.97 | [34] |
32 | Abietadiene | 1970 | 1968 | 0.14 ± 0.02 | [27] | 2450 | 2450 | 0.14 ± 0.01 | [32] |
33 | Phyllocladanol | 2000 | 1997 | 0.22 ± 0.01 | [27] | - | - | - | |
Monoterpene hydrocarbons (%) | 12.55 | 21.05 | |||||||
Sesquiterpene hydrocarbons (%) | 6.10 | 6.72 | |||||||
Oxygenated sesquiterpenes (%) | 0.93 | 0.87 | |||||||
Diterpenes hydrocarbons (%) | 65.41 | 68.16 | |||||||
Oxygenated diterpenes (%) | 3.12 | 2.17 | |||||||
Others (%) | 0.05 | 0.10 | |||||||
Total (%) | 88.16 | 99.07 |
Component | RT a (min) | LRI b | Enantiomeric Distribution (%) | ee (%) |
---|---|---|---|---|
(+)-α-Pinene | 10.835 | 982 | 0.53 | 98.94 |
(-)-α-Pinene | 10.935 | 984 | 99.47 | |
(+)-Camphene | 11.830 | 999 | 43.97 | 12.86 |
(-)-Camphene | 12.003 | 1000 | 56.03 | |
(-)-γ-Muurolene | 45.013 | 1552 | 33.17 | 33.66 |
(+)-γ-Muurolene | 45.111 | 1553 | 66.83 | |
(+)-δ-Cadinene | 48.097 | 1607 | 38.51 | 22.98 |
(-)-δ-Cadinene | 48.191 | 1609 | 61.49 |
Sample | AChE, IC50 ± SD (µg/mL) | BuChE, IC50 ± SD (µg/mL) |
---|---|---|
Araucaria brasiliensis EO | 225.3 ± 24.2 | 95.7 ± 20.8 |
Donepezil hydrochloride | 0.04 ± 0.01 | 3.60 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo, D.; Calva, J.; Bec, N.; Larroque, C.; Vidari, G.; Armijos, C. Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador. Molecules 2022, 27, 3793. https://doi.org/10.3390/molecules27123793
Jaramillo D, Calva J, Bec N, Larroque C, Vidari G, Armijos C. Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador. Molecules. 2022; 27(12):3793. https://doi.org/10.3390/molecules27123793
Chicago/Turabian StyleJaramillo, Diana, James Calva, Nicole Bec, Christian Larroque, Giovanni Vidari, and Chabaco Armijos. 2022. "Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador" Molecules 27, no. 12: 3793. https://doi.org/10.3390/molecules27123793
APA StyleJaramillo, D., Calva, J., Bec, N., Larroque, C., Vidari, G., & Armijos, C. (2022). Chemical Characterization and Biological Activity of the Essential Oil from Araucaria brasiliensis Collected in Ecuador. Molecules, 27(12), 3793. https://doi.org/10.3390/molecules27123793