Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal
Abstract
:1. Introduction
2. Geological Backgrounds
3. Samples and Experiments
3.1. Sampling
3.2. Coal Quality
3.3. Field Emission Scanning Electron Microscopy
3.4. Raman Spectroscopy
4. Results and Discussion
4.1. Organic Matter and Mineral Characteristics
4.2. Effect of Pressure
4.3. Raman Spectra
4.4. Relationship between La and FWG and FWD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ferrari, A. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Slonczewski, J.; Weiss, P. Band structure of graphite. J. Chem. Phys. 2008, 21, 2238–2239. [Google Scholar] [CrossRef]
- Clegg, K. Metamorphism of Coal by Peridotite Dikes in Southern Illinois. In State Geological Survey Report of Investigations; Geological Survey Library: Urbana, IL, USA, 1955; Volume 178, pp. 17–18. [Google Scholar]
- Johnson, R. Coal Resources of the Trinidad Coal Field in Huerfano and Las Animas Counties, Colorado: A Resume of the Coal Resources in an Area of 1100 Square Miles in South-Central Colorado. No. 1112; US Government Printing Office: Washington, DC, USA, 1961.
- Meyers, P.; Simoneit, B. Effects of extreme heating on the elemental and isotopic compositions of an Upper Cretaceous coal. Org. Geochem. 1999, 30, 299–305. [Google Scholar] [CrossRef]
- Gurba, L.; Weber, C. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Australia. Int. J. Coal Geol. 2001, 46, 113–131. [Google Scholar] [CrossRef]
- Stewart, A.; Massey, M.; Padgett, P.; Rimmer, S.; Hower, J. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois. Int. J. Coal Geol. 2005, 63, 58–67. [Google Scholar] [CrossRef]
- Cooper, J.; Crelling, J.; Rimmer, S.; Whittington, A. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. Int. J. Coal Geol. 2007, 71, 15–27. [Google Scholar] [CrossRef]
- Saghafi, A.; Pinetown, K.; Grobler, P.; Vanheerden, J. CO2 storage potential of South African coals and gas entrapment enhancement due to igneous intrusions. Int. J. Coal Geol. 2008, 73, 74–87. [Google Scholar] [CrossRef]
- Rimmer, S.; Yoksoulian, L.; Hower, J. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. Int. J. Coal Geol. 2009, 79, 74–82. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D. Effects of igneous intrusions on coal petrology, pore-fracture and coalbed methane characteristics in Hongyang, Handan and Huaibei coalfields, North China. Int. J. Coal Geol. 2012, 96–97, 72–81. [Google Scholar] [CrossRef]
- O’Keefe, J.; Bechtel, A.; Christanis, K.; Dai, S.; DiMichele, W.; Eble, C.; Esterle, J.; Mastalerz, M.; Raymond, A.; Valentim, B.; et al. On the fundamental difference between coal rank and coal type. Int. J. Coal Geol. 2013, 118, 58–87. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, Y.; Wang, L.; Zhou, H. Experiments on the effects of igneous sills on the physical properties of coal and gas occurrence. J. Nat. Gas Sci. Eng. 2014, 19, 98–104. [Google Scholar] [CrossRef]
- Rahman, M.; Rimmer, S. Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (No. 5) Coal, Illinois Basin. Int. J. Coal Geol. 2014, 131, 214–226. [Google Scholar] [CrossRef]
- Aghaei, H.; Gurba, L.; Ward, C.; Hall, M.; Mahmud, S. Effects of igneous intrusions on thermal maturity of carbonaceous fluvial sediments: A case study of the Early Cretaceous Strzelecki Group in west Gippsland, Victoria, Australia. Int. J. Coal Geol. 2015, 152, 68–77. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Q.; Cheng, Y.; Jin, K.; Zhao, W.; Guo, H. Influence of thermal metamorphism on CBM reservoir characteristics of low-rank bituminous coal. J. Nat. Gas Sci. Eng. 2016, 36, 916–930. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Q.; Cheng, Y.; Wang, H.; Liu, Z. Quantitative investigation on the structural characteristics of thermally metamorphosed coal: Evidence from multi-spectral analysis technology. Environ. Earth Sci. 2017, 76, 406. [Google Scholar] [CrossRef]
- Glikson, M.; Boreham, C.; Thiede, D. Coal Composition and Mode of Maturation, a Determining Factor in the Quantifying Hydrocarbon Species Generated. In Coalbed Methane: Scientific, Environmental and Economic Evaluation; Mastalerz, M., Glikson, M., Golding, S.Ž., Eds.; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1999; pp. 155–185. [Google Scholar]
- Golab, A.; Carr, P. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia. Int. J. Coal Geol. 2004, 57, 197–210. [Google Scholar] [CrossRef]
- Pratheesh, P.; Prasannakumar, V.; Prasannakumar, K. Praveen Geochemistry of the late phanerozoic mafic dykes from the Moyar shear zone, South India, and its implications on the spatial extent of Deccan Large Igneous Province. Arab. J. Geosci. 2013, 6, 3281–3291. [Google Scholar] [CrossRef]
- Jiang, J.; Cheng, Y.; Zhang, P.; Jin, K.; Cui, J.; Du, H. CBM drainage engineering challenges and the technology of mining protective coal seam in the Dalong Mine, Tiefa Basin, China. J. Nat. Gas Sci. Eng. 2015, 24, 412–424. [Google Scholar] [CrossRef]
- Kisch, H.; Taylor, G. Metamorphism and alteration near an intrusive-coal contact. Econ. Geol. 1966, 61, 343–361. [Google Scholar] [CrossRef]
- Bostick, N.; Collins, B.; Bostick, N. Petrography and programmed pyrolysis of coal and natural coke intruded by an igneous dike, Coal Basin, Pitkin County. Teach. Geogr. 1987, 22, 92–93. [Google Scholar]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Iwashita, N.; Inagaki, M. Relations between structural parameters obtained by X-ray powder diffraction of various carbon materials. Carbon 1993, 31, 1107–1113. [Google Scholar] [CrossRef]
- Wu, D.; Liu, G.; Sun, R.; Fan, X. Investigation of Structural Characteristics of Thermally Metamorphosed Coal by FTIR Spectroscopy and X-ray Diffraction. Energy Fuels 2013, 27, 5823–5830. [Google Scholar]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martinez-Alonso, A.; Tascón, J. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Mennella, V.; Monaco, G.; Colangeli, L.; Bussoletti, E. Raman spectra of carbon-based materials excited at 1064 nm. Carbon 1995, 33, 115–121. [Google Scholar] [CrossRef]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Zerda, T.; John, A.; Chmura, K. Raman studies of coals. Fuel 1981, 60, 375–378. [Google Scholar] [CrossRef]
- Chandra, D. Use of reflectance in evaluating temperature of carbonized or thermally metamorphosed coals. Fuel 1965, 44, 171–176. [Google Scholar]
- Tuinstra, F.; Koenig, J. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Hiura, H.; Ebbesen, T.; Tanigaki, K.; Takahashi, H. Raman studies of carbon nanotubes. Chem. Phys. Lett. 1993, 202, 509–512. [Google Scholar] [CrossRef]
- Sonibare, O.; Haeger, T.; Foley, S. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Hirsch, P. X-ray Scattering from Coals. Proc. R. Soc. A 1954, 226, 143–169. [Google Scholar]
- Nakamizo, M.; Honda, H.; Inagaki, M. Raman spectra of ground natural graphite. Carbon 1978, 16, 281–283. [Google Scholar] [CrossRef]
Sample | D (m) | Rmin (%) | Ro (%) | Rmax (%) | Proximate Analysis | Organic | Inorganic | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ad (%) | Vdaf (%) | Mad (%) | Vitrinite (%) | Inertinite (%) | Liptinite (%) | Clay (%) | Sulphide (%) | Carbonate (%) | |||||
ZJ1 | 0.1 | 3.87 | 3.91 | 4.63 | 17.46 | 8.86 | 0.64 | 72.34 | 20.26 | 4.11 | 1.36 | 0.50 | 1.43 |
ZJ2 | 0.2 | 3.18 | 3.55 | 4.17 | 19.69 | 8.91 | 0.67 | 47.62 | 35.88 | 11.17 | 2.50 | 0.70 | 2.13 |
ZJ3 | 0.4 | 2.98 | 3.12 | 3.41 | 17.05 | 8.74 | 0.54 | 56.35 | 31.02 | 7.94 | 3.30 | 0.46 | 0.93 |
ZJ4 | 0.7 | 2.56 | 2.78 | 3.02 | 19.66 | 8.06 | 0.62 | 62.70 | 23.41 | 5.83 | 3.37 | 0.91 | 3.79 |
Sample | Band | Position (D- and G-Peak) | ID/IG | FWHM (D- and G-Peak) | La (Å) |
---|---|---|---|---|---|
ZJ1 | D peak | 1309 | 0.273 | 27.272 | 161.2 |
G peak | 1580 | 20.323 | |||
ZJ2 | D peak | 1317 | 0.375 | 35.259 | 117.3 |
G peak | 1583 | 20.653 | |||
ZJ3 | D peak | 1322 | 0.494 | 35.805 | 89.1 |
G peak | 1584 | 26.459 | |||
ZJ4 | D peak | 1329 | 0.613 | 39.963 | 71.8 |
G peak | 1591 | 28.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Liang, W.; Wei, C.; Wu, D.; Gao, X.; Hu, G. Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal. Molecules 2022, 27, 3810. https://doi.org/10.3390/molecules27123810
Luo H, Liang W, Wei C, Wu D, Gao X, Hu G. Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal. Molecules. 2022; 27(12):3810. https://doi.org/10.3390/molecules27123810
Chicago/Turabian StyleLuo, Huogen, Wenxu Liang, Chao Wei, Dun Wu, Xia Gao, and Guangqing Hu. 2022. "Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal" Molecules 27, no. 12: 3810. https://doi.org/10.3390/molecules27123810
APA StyleLuo, H., Liang, W., Wei, C., Wu, D., Gao, X., & Hu, G. (2022). Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal. Molecules, 27(12), 3810. https://doi.org/10.3390/molecules27123810