Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Preparation of AC-CQDs
2.3. Construction of Sensor Array
2.4. Experimental Methods for Metal Ion Identification
2.5. Analysis of Real Samples
3. Results and Discussion
3.1. Optimization of Detection Conditions
3.2. Metal Ion-Induced Sensing Element Aggregation
3.3. Response of the Sensor Array to Metal Ions
3.4. Determination of Unknown Metal Ions in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.X.; Hou, J.Z.; Zhou, H.P.; Jia, M.Q.; Chen, S.S.; Huang, H.; Zhang, L.; Yu, C. A fluorescence sensor array based on perylene probe monomer-excimer emission transition for the highly efficient differential sensing of metal ions and drinking waters. Sens. Actuator B-Chem. 2020, 319, 128212. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. Technol. 2010, 4, 200–222. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.; Karve, M.S.; Kakade, B.; Pillai, V.K. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microlelectrode to enhance sucrose biosensor’s sensitivity. Biosens. Bioelectron. 2008, 24, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Patrick, L. Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern. Med. Rev. 2006, 11, 114–127. [Google Scholar]
- Novak, P.; Dedina, J.; Kratzer, J. Preconcentration and atomization of arsane in a dielectric barrier discharge with detection by atomic absorption spectrometry. Anal. Chem. 2016, 88, 6064–6070. [Google Scholar] [CrossRef]
- Dados, A.; Paparizou, E.; Eleftheriou, P.; Papastephanou, C.; Stalikas, C.D. Nanometer-sized ceria-coated silica–iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES. Talanta 2014, 121, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.S.; Lee, C.P.; Ho, T.Y. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: The influence of low level Mg and Ca. Talanta 2014, 128, 337–344. [Google Scholar] [CrossRef]
- Duong, T.Q.; Kim, J.S. Fluoro- and chromogenic chemodosimeters for heavy metal Ion detection in solution and biospecimens. Talanta 2010, 110, 6280–6301. [Google Scholar]
- Kim, H.N.; Ren, W.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, P.F.; Chen, H.W.; Li, C.; Chen, L.N.; Fan, H.B.; Chen, F.L. Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sens. Actuator B-Chem. 2019, 295, 110–116. [Google Scholar] [CrossRef]
- You, C.C.; Miranda, O.R.; Gider, B.; Ghosh, P.S.; Kim, I.B.; Erdogan, B.; Krovi, S.A.; Bunz, U.H.F.; Rotello, V.M. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2007, 2, 318–323. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L.B. Combinatorial receptor codes for odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xu, C.H.; Yu, Y.L.; Wang, J.H. Multichannel fluorescent sensor array for discrimination of thiols using carbon dot-metal ion pairs. Sens. Actuator B-Chem. 2018, 266, 553–560. [Google Scholar] [CrossRef]
- Abbasi-Moayed, S.; Hormozi-Nezhad, M.R.; Maaza, M. A multichannel single-well sensor array for rapid and visual discrimination of catecholamine neurotransmitters. Sens. Actuator B-Chem. 2014, 296, 126691. [Google Scholar] [CrossRef]
- Ghasemi, F.; Hormozi-Nezhad, M.R. Determination and identification of nitroaromatic explosives by a double-emitter sensor array. Talanta 2019, 201, 230–236. [Google Scholar] [CrossRef]
- Minami, T.; Esipenko, N.A.; Zhang, B.; Isaacs, L.; Nishiyabu, R.; Kubo, Y.; Anzenbacher, P. Supramolecular sensor for cancer-associated nitrosamines. J. Am. Chem. Soc. 2012, 134, 20021–20024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649–8682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigdeli, A.; Ghasemi, F.; Golmohammadi, H.; Abbasi-Moayed, S.; Nejad, M.A.F.; Fahimi-Kashani, N.; Jafarinejad, S.; Shahrajabian, M.; Hormozi-Nezhad, M.R. Nanoparticle-based optical sensor arrays. Nanoscale 2017, 9, 16546–16563. [Google Scholar] [CrossRef]
- Sun, W.B.; Lu, Y.X.; Mao, J.P.; Chang, N.; Yang, J.E.; Liu, Y.Y. Multidimensional sensor for pattern recognition of proteins based on DNA-Gold nanoparticles conjugates. Anal. Chem. 2015, 87, 3354–3359. [Google Scholar] [CrossRef]
- Li, X.N.; Kong, H.; Mout, R.; Saha, K.; Moyano, D.F.; Robinson, S.M.; Rana, S.; Zhang, X.R.; Riley, M.A.; Rotello, V.M. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor. ACS Nano 2014, 8, 12014–12019. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.P.; Lu, Y.X.; Chang, N.; Yang, J.E.; Zhang, S.C.; Liu, Y.Y. Multidimensional colorimetric sensor array for discrimination of proteins. Biosens. Bioelectron. 2016, 86, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.P.; Lu, Y.X.; Chang, N.; Yang, J.E.; Yang, J.C.; Zhang, S.C.; Liu, Y.Y. A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination. Analyst 2015, 141, 4014–4017. [Google Scholar] [CrossRef]
- Rana, S.; Le, N.D.B.; Mout, R.; Saha, K.; Tonga, G.Y.; Bain, R.E.S.; Miranda, O.R.; Rotello, C.M.; Rotello, V.M. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nat. Nanotechnol. 2014, 10, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.; Lu, Y.X.; Mao, J.P.; Yang, J.E.; Li, M.N.; Zhang, S.C.; Liu, Y.Y. Ratiometric fluorescence sensor arrays based on quantum dots for detection of proteins. Analyst 2016, 141, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Minamiki, T.; Tokito, S.; Minami, T. A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chem. Commun. 2017, 53, 6561–6564. [Google Scholar] [CrossRef]
- Minami, T.; Liu, Y.L.; Akdeniz, A.; Koutnik, P.; Esipenko, N.A.; Nishiyabu, R.; Kubo, Y.; Anzenbacher, P. Intramolecular indicator displacement assay for anions: Supramolecular sensor for glyphosate. J. Am. Chem. Soc. 2014, 136, 11396–11401. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.B.; Cao, Y.; Kubota, R.; Sasaki, Y.; Asano, K.; Lyu, X.J.; Zhang, Z.J.; Zhou, Q.; Zhao, X.L.; Xu, X.; et al. Fluorescence anion chemosensor array based on pyrenylboronic acid. Front. Chem. 2020, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Uzun, L.; Denizli, A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl. Mater. Interfaces Soc. 2014, 6, 18395–18400. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, Y.; Wu, J.T.; Chen, S.Y.; Chen, Y.Z.; Zhou, X.W.; Jiang, Y.Y.; Tan, C.Y. Fluorescence array-based sensing of metal ions using conjugated polyelectrolytes. ACS Appl. Mater. Interfaces 2015, 7, 6882–6888. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Sun, X.; Song, D.H.; Zhao, J.Q.; Hou, D.Y.; Li, Y.X. Development of a fluorescence sensor array for the discrimination of metal ions and brands of packaged water based on gallate-modified polymer dots. Anal. Methods 2019, 11, 3168–3174. [Google Scholar] [CrossRef]
- Lu, Y.X.; Liu, Y.Y.; Zhang, S.G.; Wang, S.; Zhang, S.C.; Zhang, X.R. Aptamer-based plasmonic sensor array for discrimination of proteins and cells with the naked eye. Anal. Chem. 2013, 85, 6571–6574. [Google Scholar] [CrossRef]
- Motiei, L.; Pode, Z.; Koganitsky, A.; Margulies, D. Targeted protein surface sensors as a tool for analyzing small populations of proteins in biological mixtures. Angew. Chem. Int. Ed. 2014, 53, 9289–9293. [Google Scholar] [CrossRef]
- De, M.; Rana, S.; Akpinar, H.; Miranda, O.R.; Arvizo, R.R.; Bunz, U.H.F.; Rotello, V.M. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat. Chem. Interfaces 2009, 1, 461–465. [Google Scholar] [CrossRef]
- Elci, S.G.; Moyano, D.F.; Rana, S.; Tong, G.Y.; Phillips, R.L.; Bunz, U.H.F.; Rotello, V.M. Recognition of glycosaminoglycan chemical patterns using an unbiased sensor array. Chem. Sci. 2013, 4, 2076–2080. [Google Scholar] [CrossRef]
- Tan, J.; Wang, H.F.; Yan, X.P. Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. Anal. Chem. 2009, 81, 5273–5280. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Cheng, H.R.; Wang, B.H.; Braun, M.S.; Fan, X.B.; Bender, M.; Huang, W.; Domhan, C.; Mier, W.; Lindner, T.; et al. A polymer/peptide complex-based sensor array that discriminates bacteria in urine. Angew. Chem. Int. Ed. 2017, 56, 15246–15251. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, Q.Z.; Zheng, W.S.; Hu, F.; Zhang, G.X.; Wang, Z.; Zhang, D.Q.; Jiang, X.Y. Identification of bacteria in water by a fluorescent array. Angew. Chem. Int. Ed. 2014, 53, 13734–13739. [Google Scholar] [CrossRef] [PubMed]
- Semancik, S.; Cavicchi, R. Kinetically controlled chemical sensing using micromachined structures. Acc. Chem. Res. 1998, 31, 279–287. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Leach, A.M. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl. Phys. Lett. 2006, 88, 134110. [Google Scholar] [CrossRef]
- Rosania, G.R.; Lee, J.W.; Ding, L.; Yoon, H.S.; Chang, Y.T. Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold. J. Am. Chem. Soc. 2003, 125, 1130–1131. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.W.; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.P.; Liu, X.; Wu, Q.H.; Yi, J.; Zhang, G.L. Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sens. Actuator B-Chem. 2017, 246, 680–685. [Google Scholar] [CrossRef]
- Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. 2012, 41, 4067–4085. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, Y.Q.; Dong, P.P.; Huang, J.F. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Xu, Z.J.; Wang, Z.K.; Liu, M.Y.; Yan, B.W.; Ren, X.Q.; Gao, Z.D. Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118147. [Google Scholar] [CrossRef]
- Li, L.B.; Li, L.; Wang, C.; Liu, K.Y.; Zhu, R.H.; Qiang, H.; Lin, Y.Q. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim. Acta 2015, 182, 763–770. [Google Scholar] [CrossRef]
- Xu, T.T.; Yang, J.X.; Song, J.M.; Chen, J.S.; Niu, H.L.; Mao, C.J.; Zhang, S.Y.; Shen, Y.H. Synthesis of high fluorescence graphene quantum dots and their selective detection for Fe3+ in aqueous solution. Sens. Actuator B-Chem. 2017, 243, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.Y.; Wang, B.L.; Yang, Y.G.; Li, J.Y. Photoluminescent chiral carbon dots derived from glutamine. Chin. Chem. Lett. 2021, 12, 3916–3920. [Google Scholar] [CrossRef]
- Cheng, H.J.; Kao, C.L.; Chen, Y.F.; Huang, P.C.; Hsu, C.Y.; Kuei, C.H. Amino acid derivatized carbon dots with tunable selectivity as logic gates for fluorescent sensing of metal cations. Microchim. Acta 2017, 184, 3179–3187. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, C.; Wu, S.; Sun, C. Ion-imprinted polymer modified with carbon quantum dots as a highly sensitive copper (II) Ion Probe. Polymers 2021, 13, 1376. [Google Scholar] [CrossRef]
- Żamojć, K.; Kamrowski, D.; Zdrowowicz, M.; Wyrzykowski, D.; Wiczk, W.; Chmurzyński, L.; Makowska, J. A pentapeptide with tyrosine moiety as fluorescent chemosensor for selective nanomolar-level detection of copper (II) ions. Int. J. Mol. Sci. 2020, 21, 743. [Google Scholar] [CrossRef] [Green Version]
- Limosani, F.; Bauer, E.M.; Cecchetti, D.; Biagioni, S.; Orlando, V.; Pizzoferrato, R.; Prosposito, P.; Carbone, M. Top-down N-doped carbon quantum dots for multiple purposes: Heavy metal detection and intracellular fluorescence. Nanomaterials 2021, 11, 2249. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Wu, Z.; Wang, L.; Liu, J.; Deng, Y.; Xiao, Z.; Fang, J.; Liang, Y. Green preparation of fluorescent nitrogen-doped carbon quantum dots for sensitive detection of oxytetracycline in environmental samples. Nanomaterials 2020, 10, 1561. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, L.; Wang, X.; He, D.; Suo, H.; Zhao, C. Fabrication of ZnO/carbon quantum dots composite sensor for detecting NO gas. Sensors 2020, 20, 4961. [Google Scholar] [CrossRef]
- Jing, W.J.; Lu, Y.X.; Yang, G.C.; Wang, F.Y.; He, L.Y.; Liu, Y.Y. Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions. Anal. Chim. Acta 2017, 985, 175–182. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Zhou, N.N.; Lin, X.M.; Lin, J.P.; Chi, Y.W.; Chen, G.N. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 2010, 22, 5895–5899. [Google Scholar] [CrossRef]
- Najafzadeh, F.; Ghasemi, F.; Hormozi-Nezhad, M.R. Anti-aggregation of gold nanoparticles for metal ion discrimination: A promising strategy to design colorimetric sensor arrays. Sens. Actuators B-Chem. 2018, 270, 545–551. [Google Scholar] [CrossRef]
- Maggini, S.; Stoecklintschan, F.B.; Morikoferzwez, S.; Walter, P. New kinetic parameters for rat liver arginase measured at near-physiological steady-state concentrations of arginine and Mn2+. Biochem. J. 1992, 283, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.G.; Xue, C.H.; Wang, J.F.; Feng, H.; Wang, Y.M.; Ma, Q.; Wang, D.F. Adsorption of Pb(II) and Cd(II) by squid ommastrephes bartrami melanin. Bioinorg. Chem. Appl. 2009, 2009, 901563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Zwart, D.; Posthuma, L. Complex mixture toxicity for single and multiple species: Proposed methodologies. Environ. Toxicol. Chem. 2005, 24, 2665–2676. [Google Scholar] [CrossRef]
- Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [Google Scholar] [CrossRef]
- Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mat. 2014, 26, 3104–3112. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Park, S.J.; Zhang, Y.; Kim, T.; Chae, S.; Park, M.; Kim, H.Y. One-step synthesis of robust nitrogen-doped carbon dots: Acid-evoked fluorescence enhancement and their application in Fe3+ detection. J. Mater. Chem. A 2015, 3, 17747–17754. [Google Scholar] [CrossRef]
- Lu, M.; Duan, Y.; Song, Y.; Tan, J.; Zhou, L. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J. Mol. Liq. 2018, 269, 766–774. [Google Scholar] [CrossRef]
- Liao, J.; Cheng, Z.; Zhou, L. Nitrogen-doping enhanced fluorescent carbon dots: Green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain. Chem. Eng. 2016, 4, 3053–3061. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Sun, Y. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens. Actuator B-Chem. 2017, 241, 73–79. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Z.; Li, R.; Zou, H.; Lin, M.; Liu, H.; Huang, C. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 2016, 8, 6770–6776. [Google Scholar] [CrossRef]
- Yang, G.; Wan, X.; Su, Y.; Zeng, X.; Tang, J. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. J. Mater. Chem. A 2016, 4, 12841–12849. [Google Scholar] [CrossRef]
- Luo, T.; Bu, L.; Peng, S.; Zhang, Y.; Zhou, Z.; Li, G.; Huang, J. One-step microwave-assisted preparation of oxygen-rich multifunctional carbon quantum dots and their application for Cu2+-curcumin detection. Talanta 2019, 205, 120117. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, T.; Wang, J.; Liu, Y.; Guo, S. Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions. Molecules 2022, 27, 3843. https://doi.org/10.3390/molecules27123843
Qin T, Wang J, Liu Y, Guo S. Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions. Molecules. 2022; 27(12):3843. https://doi.org/10.3390/molecules27123843
Chicago/Turabian StyleQin, Tianlei, Jiayi Wang, Yuanli Liu, and Song Guo. 2022. "Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions" Molecules 27, no. 12: 3843. https://doi.org/10.3390/molecules27123843
APA StyleQin, T., Wang, J., Liu, Y., & Guo, S. (2022). Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions. Molecules, 27(12), 3843. https://doi.org/10.3390/molecules27123843