Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the JO
2.2. Peroxide and Iodine Values
2.3. Fatty Acid Profile
3. Materials and Methods
3.1. Plant Source
3.2. Methods
3.2.1. Chemical Composition of Jojoba Seeds
Moisture Content
Oil Extraction
Protein Content
Crude Fiber Content
Ash Content
3.2.2. Evaluation of the Chemical Parameters of JO
Peroxide Value
Iodine Value
Fatty Acids Composition
3.2.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yermanos, D.M. Performance of jojoba under cultivation between 1973 and 1982, information developed at the University of California, Riverside. In Jojoba and Its Uses through 1982, Proceedings of the Fifth International Conference, Tucson, AZ, USA, 11–15 October 1982; Elias-Cenik, A., Ed.; University of Arizona: Tucson, AZ, USA, 2018; pp. 200–201. [Google Scholar]
- Purcell, H.C.; Abbott, T.P.; Holser, R.A.; Phillips, B.S. Simmondsin and wax ester levels in 100 high-yielding jojoba clones. Ind. Crops Prod. 2000, 12, 151–157. [Google Scholar] [CrossRef]
- Purcell, H.C.; Purcell, H.C. Jojoba crop improvement through genetics. In Proceedings of the 7th International Conference on Jojoba and Its Uses, Pheonix, AZ, USA, 17–22 January 1988; pp. 69–85. [Google Scholar]
- Sandha, G.K.; Swami, V.K. Study of Quality Parameter of Jojoba Oil Important For Production of Value Added Products. Int. J. Chem. Sci. 2008, 6, 959–974. [Google Scholar]
- Al-Soqeer, A. Evaluation of seven jojoba (Simmondsia chinensis) clones under Qassim Region conditions in Saudi Arabia. Int. J. Agric. Sci. Res. 2014, 3, 203–212. [Google Scholar]
- Gruenwald, J.; Brendler, T.; Jaenicke, C. PDR for Herbal Medicines; Thomson Reuters: Toronto, ON, Canada, 2007. [Google Scholar]
- Buckle, J. Clinical Aromatherapy-E-Book: Essential Oils in Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Astrup, A.; Dyerberg, J.; Elwood, P.; Hermansen, K.; Hu, F.B.; Jakobsen, M.U.; Kok, F.J.; Krauss, R.M.; Lecerf, J.M.; LeGrand, P.; et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: Where does the evidence stand in 2010? Am. J. Clin. Nutr. 2011, 93, 684–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef]
- Baldwin, A.R. (Ed.) Seventh International Conference on Jojoba and Its Uses: Proceedings; The American Oil Chemists Society: Urbana, IL, USA, 1988. [Google Scholar]
- Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Thomas, J.; Snyder, P.W. Final Report of the Cosmetic Ingredient Review Expert Panel Safety Assessment of Simmondsia chinensis (Jojoba) Seed Oil, Simmondsia chinensis (Jojoba) Seed Wax, Hydrogenated Jojoba Oil, Hydrolyzed Jojoba Esters, Isomerized Jojoba Oil, Jojoba Este. Cosmet. Ingred. Rev. 2008, 23, 1–32. Available online: https://online.personalcarecouncil.org/ctfa-static/online/lists/cir-pdfs/FR525.pdf (accessed on 23 September 2008).
- Araiza-Lizarde, N.; Alcaraz-Meléndez, L.; Angulo-Escalante, M.A.; Reynoso-Granados, T.; Cruz-Hernández, P.; Calderón-Vázquez, C.L. Physicochemical composition of seed oil of wild jojoba populations in northwestern Mexico. J. Food Nutr. Res. 2017, 5, 443–450. [Google Scholar]
- Atteya, A.K.; Sami, R.; Al-Mushhin, A.A.; Ismail, K.A.; Genaidy, E.A. Response of seeds, oil yield and fatty acids percentage of Jojoba Shrub strain EAI to mycorrhizal fungi and moringa leaves extract. Horticulturae 2021, 7, 395. [Google Scholar] [CrossRef]
- El-Mallah, M.H.; El-Shami, S.M. Investigation of liquid wax components of Egyptian jojoba seeds. J. Oleo Sci. 2009, 58, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Raeven, P.; Evert, R.; Eichorn, S. Biología de Plantas; Reverte, S.A.: Barcelona, Spain, 1992; p. 371. [Google Scholar]
- Al-Soqeer, A.; Motawei, M.I.; Al-Dakhil, M.; El-Mergawi, R.; Al-Khalifah, N. Genetic variation and chemical traits of selected new jojoba (Simmondsia chinensis (Link) Schneider) genotypes. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1455–1461. [Google Scholar] [CrossRef]
- Abd El Mohsen, M.A.; Abd Allatif, A.M. Selection of Some Promising Jojoba (Simmondsia chinensis) Genotypes: Evaluation of Tree Growth and Productivity. Egypt. J. Plant Breed. 2015, 19, 1953–1962. [Google Scholar] [CrossRef]
- Asgari, B.; Bowen, J. Gallium (III)-Metalloporphyrin Grafted Magnetite Nanoparticles for Fluoride Removal from Aqueous Solutions. Nat. Prod. Chem. Res. 2017, 5, 4–6. [Google Scholar] [CrossRef]
- Bilin, M.; Alshanableh, F.; Evcil, A.; Savas, M.A. A Comparative Examination of the Quality of Jojoba Seed Oil Harvested on the Mesaoria Plain of Cyprus Island. In Proceedings of the 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT 2018), Ankara, Turkey, 19–21 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Eltaweel, A.; Aly, A.; El-Bol Ok, T.K.; Arafat, S. Evaluation of Some Female Jojoba Genotypes under Sandy Land Conditions. J. Plant Prod. 2017, 8, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghamdi, A.K.; Elkholy, T.A.; Abuhelal, S.; Alabbadi, H.; Qahwaji, D.; Sobhy, H.; Khalefah, N.; Abu Hilal, M. Study of Jojoba (Simmondsia chinensis) Oil by Gas Chromatography. Nat. Prod. Chem. Res. 2017, 5, 1000282. [Google Scholar]
- Nahla, A.A.; Eliraqy, M.; Abo El-Khasab, A.A.; Ismail, R.M.; Esmail, A.S.; Elsayh, S.A.A.; Abd El-Aziz, Y.; El-Bassel, E.; El-Ashry, H.; Gawish, M.S. Comparative Studies on Vegetative and in vitro Propagation of Elite Selected Jojoba Strains. Asian J. Agric. Hortic. Res. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Nahla, A.; Adawy, S.; Eliraq, M.; Abo El-Khasab, A.; Abd El-Aziz, Y.; El-Bassel, E.; Esmail, A.S.; Attaia, M.; Darwish, S.H.; El-Ashry, H.; et al. Selection and Agronomical Evaluation for Some Elite Genotypes of Jojoba. J. Appl. Life Sci. Int. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Gad, H.A.; Roberts, A.; Hamzi, S.H.; Gad, H.A.; Touiss, I.; Altyar, A.E.; Kensara, O.; Ashour, M.L. Jojoba Oil: An Updated Comprehensive Review on Chemistry, Pharmaceutical Uses, and Toxicity. Polymers 2021, 13, 1711. [Google Scholar] [CrossRef]
- Cappillino, P.; Kleiman, R.; Botti, C. Composition of Chilean jojoba seeds. Ind. Crops Prod. 2003, 17, 177–182. [Google Scholar] [CrossRef]
- Mohamed, E.A. Nutritional, biochemical and histopathological studies on Jojoba protein isolate. Braz. J. Food Technol. 2007, 10, 198–204. [Google Scholar]
- Chakrabarty, M.M. Chemistry and Technology of Oils & Fats; Allied Publishers: New Delhi, India, 2003. [Google Scholar]
- Uniform Standards of Jojoba Oil Quality on IJEC. 2018. Available online: http://ijec.net/standards/ (accessed on 5 April 2022).
- Kramer, J.K.G.; Sauer, F.D.; Pigden, W.J. High and Low Erucic Acid Rapeseed Oils: Production, Usage, Chemistry, and Toxicological Evaluation; Academic Press: New York, NY, USA, 1983; 582p. [Google Scholar]
- Matsumoto, Y.; Ma, S.; Tominaga, T.; Yokoyama, K.; Kitatani, K.; Horikawa, K.; Suzuki, K. Acute effects of transdermal administration of jojoba oil on lipid metabolism in mice. Medicina 2019, 55, 594. [Google Scholar] [CrossRef] [Green Version]
- Gill, K.S.; Kaur, G.; Kaur, G.; Kaur, J.; Sra, S.K.; Kaur, K.; Kaur, G.; Sharma, M.; Bansal, M.; Chhuneja, M.; et al. Development and Validation of Kompetitive Allele-Specific PCR Assays for Erucic Acid Content in Indian Mustard [Brassica juncea (L.) Czern and Coss.]. Front. Plant Sci. 2021, 12, 594. [Google Scholar] [CrossRef]
- Kumar, J.S.; Sharma, B. A review on neuropharmacological role of erucic acid: An omega-9 fatty acid from edible oils. Nutr. Neurosci. 2020, 25, 1041–1055. [Google Scholar] [CrossRef]
- Nissar, A.U.; Sharma, L.; Tasduq, S.A. Palmitic acid induced lipotoxicity is associated with altered lipid metabolism, enhanced CYP450 2E1 and intracellular calcium mediated ER stress in human hepatoma cells. Toxicol. Res. 2015, 4, 1344–1358. [Google Scholar] [CrossRef]
- Aumeistere, L.; Beluško, A.; Ciproviča, I.; Zavadska, D. Trans Fatty Acids in Human Milk in Latvia: Association with Dietary Habits during the Lactation Period. Nutrients 2021, 13, 2967. [Google Scholar] [CrossRef]
- AOAC International. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Agarwal, S.; Arya, D.; Khan, S. Comparative fatty acid and trace elemental analysis identified the best raw material of jojoba (Simmondsia chinensis) for commercial applications. Ann. Agric. Sci. 2018, 63, 37–45. [Google Scholar] [CrossRef]
- Beljkaš, B.; Matić, J.; Milovanović, I.; Jovanov, P.; Mišan, A.; Šarić, L. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accredit. Qual. Assur. 2010, 15, 555–561. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, M.; Yu, T.; Du, S.; Liao, L.; Wang, H.; Wu, Y.; Liu, H. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy. Food Chem. 2021, 344, 12870. [Google Scholar] [CrossRef]
- Sadasivam, S. Biochemical Methods; New Age Internal: Delhi, India, 1996. [Google Scholar]
- Costat. Cohort Software 798 Lighthouse Ave, PMB 320, Version 6.311. Cohort: Monterery, CA, USA, 2005. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F-tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
Lines | Crude Oil % | Moisture % | Crude Protein % | Crude Fiber % | Ash % |
---|---|---|---|---|---|
S1 | 45.38 ± 0.42 d | 4.20 ± 0.19 de | 11.66 ± 0.39 h | 11.08 ± 0.21 h | 1.76 ± 0.10 ab |
S2 | 42.13 ± 0.71 f | 4.25 ± 0.21 de | 12.53 ± 0.29 ef | 17.55 ± 0.37 a | 1.45 ± 0.08 d |
S3 | 48.11 ± 0.69 a | 3.93 ± 0.19 ef | 13.47 ± 0.30 b | 17.74 ± 0.32 a | 1.82 ± 0.21 ab |
S4 | 41.97 ± 0.64 f | 4.07 ± 0.12 e | 12.04 ± 0.35 g | 11.25 ± 0.35 h | 1.84 ± 0.16 ab |
S5 | 47.34 ± 0.52 b | 3.90 ± 0.20 ef | 12.10 ± 0.25 g | 9.94 ± 0.36 i | 1.56 ± 0.11 cd |
S6 | 48.05 ± 0.56 a | 4.74 ± 0.12 b | 13.12 ± 0.21 cd | 16.15 ± 0.20 b | 1.63 ± 0.06 bc |
S7 | 43.21 ± 0.54 e | 5.26 ± 0.15 a | 12.55 ± 0.23 e | 17.71 ± 0.22 a | 1.78 ± 0.10 bc |
S8 | 46.21 ± 0.46 c | 4.02 ± 0.14 e | 13.42 ± 0.28 bc | 12.22 ± 0.27 g | 1.68 ± 0.14 ab |
S9 | 42.07 ± 0.57 f | 3.71 ± 0.18 fg | 12.10 ± 0.30 g | 13.12 ± 0.28 f | 1.83 ± 0.13 ab |
S10 | 48.15 ± 0.60 a | 3.70 ± 0.10 fg | 12.14 ± 0.26 g | 13.31 ± 0.35 ef | 1.97 ± 0.11 a |
S11 | 45.17 ± 0.54 d | 3.43 ± 0.20 g | 11.93 ± 0.33 gh | 14.51 ± 0.22 c | 1.75 ± 0.10 ab |
S12 | 45.04 ± 0.63 d | 4.65 ± 0.11 bc | 13.89 ± 0.37 a | 13.57 ± 0.20 e | 1.86 ± 0.11 ab |
S13 | 46.87 ± 0.48 b | 3.62 ± 0.12 g | 11.94 ± 0.33 gh | 14.29 ± 0.27 d | 1.72 ± 0.12 ab |
S14 | 48.31 ± 0.64 a | 4.34 ± 0.13 cd | 12.98 ± 0.21 d | 14.16 ± 0.34 d | 1.91 ± 0.10 ab |
S15 | 43.45 ± 0.38 e | 4.60 ± 0.15 bc | 12.23 ± 0.25 fg | 10.20 ± 0.29 i | 1.86 ± 0.09 ab |
Lines | Iodine Value (Gram) | Peroxide Value mEq/Kg |
---|---|---|
S1 | 82.61 ± 0.59 fg | 0.99 ± 0.09 ab |
S2 | 84.38 ± 0.98 cd | 0.50 ± 0.08 f |
S3 | 84.22 ± 0.79 cde | 0.71 ± 0.11 de |
S4 | 83.66 d ± 0.32 ef | 0.65 ± 0.07 ef |
S5 | 82.68 ± 0.47 fg | 0.92 ± 0.09 bc |
S6 | 83.60 ± 0.30 fg | 0.95 ± 0.13 bc |
S7 | 84.94 ± 0.79 c | 1.07 ± 0.07 ab |
S8 | 83.20 ± 0.32 efg | 0.73 ± 0.08 e |
S9 | 82.28 ± 0.48 g | 0.87 ± 0.10 cd |
S10 | 84.00 ± 0.33 cde | 1.04 ± 0.09 ab |
S11 | 83.91 ± 0.79 cde | 0.49 ± 0.08 f |
S12 | 83.67 ± 0.38 def | 1.16 ± 0.10 a |
S13 | 94.75 ± 0.29 a | 0.25 ± 0.07 g |
S14 | 94.02 ± 1.02 a | 0.27 ± 0.05 g |
S15 | 91.78 ± 0.49 b | 1.19 ± 0.07 a |
IJEC Standard, 1998–AOCS [28] | 82–87/100 (AOCS Cd 1–25) | 2.0 (max) (AOCS Cd 8–53) |
Lines | Palmitic Acid C16:0 | Plamitioleic Acid C16:1 | Stearic Acid C18:0 | Vaccinic Acid C18:1 | Oleic Acid C18:1 | Linoleic Acid C18:2 | Linolenic Acid C18:3 | Gadoleic Acid C20:1 | Erucic Acid C22:1 |
---|---|---|---|---|---|---|---|---|---|
S1 | 1.26 ± 0.04 de | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 1.14 ± 0.04 c | 9.30 ± 0.11 d | 0.00 ± 0.03 g | 0.15 ± 0.01 e | 75.50 ± 0.47 a | 13.04 ± 0.22 h |
S2 | 1.15 ± 0.05 ef | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.77 ± 0.07 gh | 9.35 ± 0.04 d | 0.69 ± 0.01 c | 0.29 ± 0.02 c | 74.10 ± 0.42 cd | 13.59 ± 0.10 f |
S3 | 1.22 ± 0.02 e | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.73 ± 0.04 h | 9.95 ± 0.17 b | 0.38 ± 0.00 d | 0.00 ± 0.00 f | 74.90 ± 0.41 ab | 12.84 ± 0.10 hi |
S4 | 3.18 ± 0.20 a | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.75 ± 0.06 gh | 10.99 ± 0.15 a | 0.00 ± 0.00 g | 0.36 ± 0.02 a | 67.85 ± 0.32 h | 13.35 ± 0.15 fg |
S5 | 0.98 ± 0.10 fg | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.72 ± 0.02 h | 9.52 ± 0.14 cd | 0.00 ± 0.03 g | 0.00 ± 0.00 f | 74.45 ± 0.38 bc | 14.05 ± 0.18 de |
S6 | 1.16 ± 0.11 ef | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.88 ± 0.05 f | 9.66 ± 0.07 c | 0.23 ± 0.01 ef | 0.00 ± 0.00 f | 72.93 ± 0.49 e | 14.35 ± 0.09 cd |
S7 | 1.16 ± 0.13 ef | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.80 ± 0.03 g | 10.00 ± 0.14 b | 0.24 ± 0.00 e | 0.00 ± 0.00 f | 72.53 ± 0.21 h | 14.45 ± 0.23 bc |
S8 | 0.97 ± 0.11 fg | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.86 ± 0.04 f | 8.78 ± 0.14 e | 0.00 ± 0.00 g | 0.00 ± 0.00 f | 73.93 ± 0.41 cd | 14.27 ± 0.14 cde |
S9 | 1.22 ± 0.11 e | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 1.04 ± 0.04 d | 8.41 ± 0.09 f | 0.00 ± 0.01 g | 0.00 ± 0.00 f | 73.76 ± 0.42 d | 14.81 ± 0.11 a |
S10 | 0.20 ± 0.04 h | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 1.62 ± 0.02 a | 9.91 ± 0.16 b | 0.20 ± 0.00 f | 0.00 ± 0.00 f | 72.95 ± 0.19 e | 13.61 ± 0.26 f |
S11 | 0.89 ± 0.05 g | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.86 ± 0.01 f | 8.09 ± 0.07 g | 0.00 ± 0.00 g | 0.00 ± 0.00 f | 74.36 ± 0.28 bcd | 13.13 ± 0.17 gh |
S12 | 0.94 ± 0.04 g | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 1.22 ± 0.03 b | 7.86 ± 0.11 h | 0.00 ± 0.02 g | 0.00 ± 0.00 f | 74.10 ± 0.24 cd | 14.73 ± 0.18 ab |
S13 | 2.32 ± 0.22 b | 0.26 ± 0.04 a | 0.16 ± 0.02 c | 0.77 ± 0.04 gh | 9.88 ± 0.16 b | 0.26 ± 0.04 e | 0.26 ± 0.03 d | 72.70 ± 0.32 e | 12.94 ± 0.13 h |
S14 | 1.41 ± 0.06 d | 0.00 ± 0.00 b | 0.66 ± 0.02 a | 0.91 ± 0.03 ef | 9.90 ± 0.12 b | 1.10 ± 0.05 b | 0.33 ± 0.01 b | 71.90 ± 0.28 f | 12.60 ± 0.16 i |
S15 | 1.66 ± 0.06 c | 0.00 ± 0.00 b | 0.37 ± 0.02 b | 0.96 ± 0.01 e | 9.90 ± 0.06 b | 1.17 ± 0.03 a | 0.35 ± 0.01 a | 70.80 ± 0.40 g | 14.00 ± 0.32 e |
IJEC Standard 1998–AOCS [28] | ≤3.0 | ≤1.0 | - | - | 5.0–15.0 | - | - | 65.0–80.0 | 10.0–20.0 |
Lines | Regions | Geographical Coordinates |
---|---|---|
S1 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S2 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S3 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S4 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S5 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S6 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S7 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S8 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S9 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S10 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S11 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S12 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S13 | Cairo-Alexandria Desert road | 30°06′52.5″ N 30°51′09.9″ E |
S14 | El-Kasasin | 30°34′00″ N 31°56′00″ E |
S15 | El-Kasasin | 30°34′00″ N 31°56′00″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, N.A.; Eliraq, M.; El-Bassel, E.H.; Ismail, A.S.M.; Abd El-Aziz, Y.S.G.; Gawish, M.S.; Zewail, R.M.Y.; Sami, R.; Khojah, E.; Hilary, U.; et al. Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil. Molecules 2022, 27, 3904. https://doi.org/10.3390/molecules27123904
Awad NA, Eliraq M, El-Bassel EH, Ismail ASM, Abd El-Aziz YSG, Gawish MS, Zewail RMY, Sami R, Khojah E, Hilary U, et al. Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil. Molecules. 2022; 27(12):3904. https://doi.org/10.3390/molecules27123904
Chicago/Turabian StyleAwad, Nahla A., Mohamed Eliraq, Emad H. El-Bassel, Ahmed S. M. Ismail, Yasser S. G. Abd El-Aziz, Mohamed S. Gawish, Reda M. Y. Zewail, Rokayya Sami, Ebtihal Khojah, Uguru Hilary, and et al. 2022. "Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil" Molecules 27, no. 12: 3904. https://doi.org/10.3390/molecules27123904
APA StyleAwad, N. A., Eliraq, M., El-Bassel, E. H., Ismail, A. S. M., Abd El-Aziz, Y. S. G., Gawish, M. S., Zewail, R. M. Y., Sami, R., Khojah, E., Hilary, U., Al-Moalem, M. H., & Sayed-Ahmed, K. (2022). Evaluation of the Effect of Elite Jojoba Lines on the Chemical Properties of their Seed Oil. Molecules, 27(12), 3904. https://doi.org/10.3390/molecules27123904