Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design
Abstract
:1. Introduction
2. Methods
2.1. Saturated Solubility
2.2. Preparation of Liquisolid Compacts
2.3. Preparation of Direct Compressed Tablets
2.4. Experimental Design for Liquisolid Compacts Formulations
2.5. Mathematical Model for Designing Mirtazapine Liquisolid Formulation
2.6. Formulation and Characterisation of Mirtazapine Liquisolid Compacts
2.6.1. Flow Properties of Liquisolid Systems
2.6.2. Differential Scanning Calorimetry (DSC)
2.6.3. X-rays Powder Diffractometry (XRD)
2.6.4. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6.5. Scanning Electron Microscopy (SEM)
2.6.6. Hardness of Liquisolid Compacts
2.6.7. Friability Test
2.6.8. Weight Variation Test
2.6.9. Drug Content Uniformity
2.6.10. Disintegration Time
2.6.11. In-Vitro Drug Release
3. Results and Discussion
3.1. Saturated Solubility Study
3.2. Flow Properties of Mirtazapine Liquisolid Formulation
3.3. Hardness of the Tablets
3.4. Tablet Dimension
3.5. Weight Variation Test
3.6. Friability
3.7. Content Uniformity Test
3.8. Disintegrating Time of Liquisolid Compacts
3.9. Ex Vivo Drug Release (Dissolution within 30 min)
3.10. X-ray Diffractrometry
3.11. FTIR Spectrum of Liquisolid Compact
3.12. Differential Scanning Calorimetry (DSC)
3.13. Scanning Electron Microscopy (SEM) for Liquisolid Compacts
3.14. Verification of Predicted Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liew, K.B.; Peh, K.K. Investigation on the effect of polymer and starch on the tablet properties of lyophilized orally disintegrating tablet. Arch. Pharmacal Res. 2021, 44, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Long, C.M.; Tang, K.; Chokshi, H.; Fotaki, N. Surface dissolution UV imaging for investigation of dissolution of poorly soluble drugs and their amorphous formulation. AAPS PharmSciTech 2019, 20, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrisyia, R.N.; Janakiraman, A.K.; Ming, L.C.; Uddin, A.H.; Sarker, Z.I.; Bin, L.K. A Review On The Solubility Enhancement Technique For Pharmaceutical Formulations. Nveo Nat. Volatiles Essent. Oils J. Nveo 2021, 8, 3976–3989. [Google Scholar]
- Long, C.M. Biopharmaceutical Considerations and In Vitro-In Vivo Correlations (IVIVCs) for Orally Administered Amorphous Formulations; University of Bath: Bath, UK, 2014. [Google Scholar]
- Lopalco, A.; Manni, A.; Keeley, A.; Haider, S.; Li, W.; Lopedota, A.; Altomare, C.D.; Denora, N.; Tuleu, C. In Vivo Investigation of (2-Hydroxypropyl)-β-cyclodextrin-Based Formulation of Spironolactone in Aqueous Solution for Paediatric Use. Pharmaceutics 2022, 14, 780. [Google Scholar] [CrossRef] [PubMed]
- Fotaki, N.; Long, C.M.; Tang, K.; Chokshi, H. Dissolution of amorphous solid dispersions: Theory and practice. In Amorphous Solid Dispersions; Springer: Berlin/Heidelberg, Germany, 2014; pp. 487–514. [Google Scholar]
- Tong, Y.; Wang, Y.; Yang, M.; Yang, J.; Chen, L.; Chu, X.; Gao, C.; Jin, Q.; Gong, W.; Gao, C. Systematic development of self-nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1. Pharmaceutics 2018, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirri, M.; Mura, P.; Valleri, M.; Brunetti, L. Development and Characterization of Liquisolid Tablets Based on Mesoporous Clays or Silicas for Improving Glyburide Dissolution. Pharmaceutics 2020, 12, 503. [Google Scholar] [CrossRef]
- Alotaibi, F.O.; Alhakamy, N.A.; Omar, A.M.; El-Say, K.M. Clinical Pharmacokinetic Evaluation of Optimized Liquisolid Tablets as a Potential Therapy for Male Sexual Dysfunction. Pharmaceutics 2020, 12, 1187. [Google Scholar] [CrossRef]
- Tiong, N.; Elkordy, A.A. Effects of liquisolid formulations on dissolution of naproxen. Eur. J. Pharm. Biopharm. 2009, 73, 373–384. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Jafari-Navimipour, B.; Nokhodchi, A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int. J. Pharm. 2007, 341, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Xing, H.; Jiang, J.; Chen, X.; Yang, T.; Wang, D.; Ding, P. Liquisolid technique and its applications in pharmaceutics. Asian J. Pharm. Sci. 2017, 12, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Al-Majed, A.; Bakheit, A.H.; Alharbi, R.M.; Aziz, H.A.A. Mirtazapine. Profiles Drug Subst. Excip. Relat. Methodol. 2018, 43, 209–254. [Google Scholar] [PubMed]
- Ezealisiji, K.E.; Mbah, C.J.; Osadebe, P.O. Aqueous Solubility Enhancement of Mirtazapine: Effect of Cosolvent and Surfactant. Pharmacol. Pharm. 2015, 6, 471. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, S.; Aytekin, E.; Yavuz, B.; Pehlivan, S.B.; Vural, I.; Unlu, N. Development and evaluation of orally disintegrating tablets comprising taste-masked mirtazapine granules. Pharm. Dev. Technol. 2018, 23, 488–495. [Google Scholar] [CrossRef]
- Sarkar, A.; Rohani, S. Molecular salts and co-crystals of mirtazapine with promising physicochemical properties. J. Pharm. Biomed. Anal. 2015, 110, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Aytekin, E.; Yavuz, B.; Pehlivan, S.B.; Unlu, N. Formulation studies for mirtazapine orally disintegrating tablets. Drug Dev. Ind. Pharm. 2016, 42, 1008–1017. [Google Scholar] [CrossRef]
- Hao, J.; Fang, X.; Zhou, Y.; Wang, J.; Guo, F.; Li, F.; Peng, X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomed. 2011, 6, 683. [Google Scholar]
- Gajic, I.M.S.; Savic, I.M.; Gajic, D.G.; Dosic, A. Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules 2021, 11, 225. [Google Scholar] [CrossRef]
- Gajic, I.M.S.; Savic, I.M.; Boskov, I.; Zerajic, S.; Markovic, I.; Gajic, D. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae Pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, S.; Abid, M.; Wu, T.; Hashim, M.M.; Saeeduddin, M.; Hu, B.; Lei, S.; Zeng, X. Ultrasound-assisted extraction of bioactive compounds and antioxidants from carrot pomace: A response surface approach. J. Food Processing Preserv. 2015, 39, 1878–1888. [Google Scholar] [CrossRef]
- Patel, T.; Patel, L.; Suhagia, B.; Soni, T.; Patel, T. Formulation of fenofibrate liquisolid tablets using central composite design. Curr. Drug Deliv. 2014, 11, 11–23. [Google Scholar] [CrossRef]
- Spireas, S.; Sadu, S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int. J. Pharm. 1998, 166, 177–188. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Gaja, J.B. Formulation and evaluation of liquisolid compacts of diclofenac sodium. PDA J. Pharm. Sci. Technol. 2010, 64, 222–232. [Google Scholar] [PubMed]
- Aulton, M.; Taylor, K. Pharmaceutics-The Science of Dosage Form Design; Churchill Livingstone: London, UK, 2002; Volume 340, p. 348. [Google Scholar]
- Aulton, M.E.; Taylor, K. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Pharmacopeia, U. The United States Pharmacopeia, USP 40/The National Formulary, NF 35. In Rockville; US Pharmacopeial Convention: Rockville, MD, USA, 2017. [Google Scholar]
- Mura, P.; Faucci, M.T.; Parrini, P.L. Effects of grinding with microcrystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev. Ind. Pharm. 2001, 27, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Chella, N.; Narra, N.; Rao, T.R. Preparation and characterization of liquisolid compacts for improved dissolution of telmisartan. J. Drug Deliv. 2014, 2014, 692793. [Google Scholar] [CrossRef]
- Sayyad, F.J.; Tulsankar, S.L.; Kolap, U.B. Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution. J. Pharm. Res. 2013, 7, 381–388. [Google Scholar] [CrossRef]
Batch | Actual Values | Coded Values | |||
X1 | X2 | X1 | X2 | ||
LS1 | 30 | 30 | 0 | 0 | |
LS2 | 40 | 15 | 1 | −1 | |
LS3 | 15.857 | 30 | −1.4142 | 0 | |
LS4 | 20 | 15 | - | −1 | |
LS5 | 30 | 30 | 0 | 0 | |
LS6 | 40 | 45 | 1 | 1 | |
LS7 | 30 | 8.786 | 0 | −1.4142 | |
LS8 | 20 | 45 | −1 | 1 | |
LS9 | 30 | 51.213 | 0 | 1.4142 | |
LS10 | 30 | 30 | 0 | 0 | |
LS11 | 44.142 | 30 | 1.4142 | 0 | |
Independent variables for liquisolid system | |||||
Independent Variables | Levels | ||||
−X (−1.414) | Low (−1) | Center (0) | High (+1) | +X (−1.414) | |
Excipient ratio R% X1 (carr:coat) | 15.85 | 20 | 30 | 40 | 44.14 |
Drug conc. in liquid X2 | 8.78 | 15 | 30 | 45 | 51.21 |
Liquisolid Systems | Excipient Ratio (R) | % Drug Concentration Cd (% w/w) | Load Factor (Lf) | Avicel in mg (Q) | Aerosil in mg (q) | SSG in mg | Unit Dose Weight in mg |
---|---|---|---|---|---|---|---|
LS1 | 30 | 30 | 0.272 | 300.20 | 10.00 | 69.30 | 444.65 |
LS2 | 40 | 15 | 0.169 | 240.32 | 6.00 | 55.13 | 356.56 |
LS3 | 15.86 | 30 | 0.348 | 240.50 | 15.20 | 61.41 | 387.11 |
LS4 | 20 | 15 | 0.207 | 200.31 | 10.01 | 47.12 | 301.64 |
LS5 | 30 | 30 | 0.452 | 205.21 | 6.70 | 52.24 | 330.33 |
LS6 | 40 | 45 | 0.406 | 320.00 | 8.01 | 75.43 | 486.90 |
LS7 | 30 | 8.78 | 0.100 | 223.5 | 7.40 | 52.30 | 331.61 |
LS8 | 20 | 45 | 0.475 | 280.10 | 14.01 | 68.33 | 446.42 |
LS9 | 30 | 51.2 | 0.424 | 350.62 | 11.51 | 82.42 | 536.14 |
LS10 | 30 | 30 | 0.389 | 210.11 | 7.00 | 54.33 | 341.72 |
LS11 | 44.14 | 30 | 0.237 | 340.06 | 7.75 | 75.01 | 491.08 |
Liquisolid Systems | Bulk Density (g) | Tapped Density (g) | Angle of Repose | Hausner’s Ratio | Carr’s Index % |
---|---|---|---|---|---|
LS1 | 0.46 | 0.54 | 28.67 ± 0.01 | 1.17 ± 0.017 | 14.9 ± 0.08 |
LS2 | 0.41 | 0.51 | 32.13 ± 0.40 | 1.24 ± 0.081 | 19.7 ± 0.22 |
LS3 | 0.39 | 0.48 | 30.44 ± 0.34 | 1.23 ± 0.037 | 18.8 ± 0.37 |
LS4 | 0.35 | 0.41 | 28.79 ± 0.05 | 1.17 ± 0.061 | 14.7 ± 0.29 |
LS5 | 0.37 | 0.45 | 29.34 ± 0.23 | 1.21 ± 0.016 | 17.8 ±0.09 |
LS6 | 0.34 | 0.45 | 36.54 ± 0.21 | 1.32 ± 0.027 | 24.5 ± 0.28 |
LS7 | 0.28 | 0.34 | 29.37 ± 0.18 | 1.21 ± 0.024 | 17.9 ± 0.41 |
LS8 | 0.26 | 0.34 | 33.25 ± 0.17 | 1.30 ± 0.011 | 23.6 ± 0.08 |
LS9 | 0.37 | 0.49 | 35.72 ± 0.16 | 1.32 ± 0.017 | 24.5 ± 0.24 |
LS10 | 0.44 | 0.52 | 27.87 ± 0.09 | 1.18 ± 0.014 | 15.4 ± 0.22 |
LS11 | 0.34 | 0.46 | 35.25 ± 0.08 | 1.35 ± 0.012 | 26.0 ± 0.29 |
Formulation Number | Hardness (kg/cm)2 | Weight Variation (mg) | Friability (%) | Disintegration Time (s) | % Drug Content | % Drug Release in 30 min |
---|---|---|---|---|---|---|
Conventional/control | 2.69 ± 0.18 | 200.2± 0.143 | 0.45 | 132.22 ± 0.123 | 92.8 ± 0.20 | 54.86 ± 0.335 |
LS1 | 3.32 ± 0.37 | 444.4 ± 0.141 | 0.49 | 126.46 ± 0.836 | 97.1 ± 0.834 | 93.37 ± 0.220 |
LS2 | 3.40 ± 0.30 | 356.4 ± 0.250 | 0.57 | 127.23 ± 0.86 | 98.6 ± 0.374 | 97.09 ± 0.508 |
LS3 | 2.87 ± 0.07 | 387.5 ± 0.244 | 0.43 | 122.08 ± 0.675 | 95.6 ± 0.265 | 91.63 ± 0.321 |
LS4 | 3.21 ± 0.24 | 301.7 ± 0.068 | 0.55 | 117.05 ± 0.511 | 97.2 ± 0.604 | 94.87 ±0.131 |
LS5 | 3.63 ± 0.37 | 330.5 ± 0.128 | 0.47 | 127.34 ± 0.449 | 92.9 ± 0.547 | 93.45 ± 0.326 |
LS6 | 2.67 ± 0.16 | 486.5 ± 0.163 | 0.68 | 140.56 ± 0.311 | 91.9 ± 0.655 | 92.49 ± 0.399 |
LS7 | 2.94 ± 0.06 | 331.4 ± 0.331 | 0.51 | 118.67 ± 0.121 | 92.3 ± 0.753 | 96.53 ± 0.432 |
LS8 | 2.83 ± 0.01 | 446.5 ± 0.208 | 0.64 | 130.55 ± 0.362 | 94.4 ± 0.668 | 89.33 ± 0.218 |
LS9 | 3.56 ± 0.57 | 536.1 ± 0.264 | 0.54 | 138.02 ± 0.213 | 93.6 ± 0.351 | 90.09 ± 0.336 |
LS10 | 3.41 ± 0.37 | 341.7 ± 0.181 | 0.41 | 127.82 ± 0.173 | 99.7 ± 0.515 | 92.91 ± 0.183 |
LS11 | 4.34 ± 0.10 | 491.3 ± 0.331 | 0.60 | 136.44 ± 0.322 | 92.3 ± 0.532 | 95.47 ± 0.251 |
Source | Disintegration Time (DT) | Angle of Repose of Powder | In Vitro Drug Release in 30 min |
---|---|---|---|
β° | 11.28 | 5.35 | 9.66 |
A | 0.2230 | 0.1469 | 0.0700 |
B | 0.2990 | 0.1956 | −0.1246 |
AB | −0.0077 | −0.0060 | 0.0131 |
A2 | 0.0438 | 0.1882 | 0.0078 |
B2 | 0.0218 | 0.1736 | 0.0012 |
p-value | <0.0001 | <0.0001 | <0.0001 |
F-value | 564.15 | 80.49 | 201.91 |
R2 | 0.9982 | 0.9877 | 0.9951 |
Adjusted.R2 | 0.9965 | 0.9755 | 0.9901 |
Predicted. R2 | 0.9956 | 0.9721 | 0.9784 |
Lack of Fit | 0.9901 | 0.9997 | 0.7082 |
Responses | Optimum Ratio of Excipients (R) | Optimum Ratio of Drug Conc. (% cd) | Predicted Value | Experimental Value |
---|---|---|---|---|
Disintegration time | 24.18% | 15 mg | 118.08 | 118.20 ± 0.148 |
Angle of repose | 24.18% | 15 mg | 28.12 | 28.14 ± 0.562 |
Dissolution | 25.22% | 15 mg | 95.61 | 95.75 ± 0.322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naureen, F.; Shah, Y.; Shah, S.I.; Abbas, M.; Rehman, I.U.; Muhammad, S.; Hamdullah, H.; Goh, K.W.; Khuda, F.; Khan, A.; et al. Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design. Molecules 2022, 27, 4005. https://doi.org/10.3390/molecules27134005
Naureen F, Shah Y, Shah SI, Abbas M, Rehman IU, Muhammad S, Hamdullah H, Goh KW, Khuda F, Khan A, et al. Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design. Molecules. 2022; 27(13):4005. https://doi.org/10.3390/molecules27134005
Chicago/Turabian StyleNaureen, Faiza, Yasar Shah, Sayyed Ibrahim Shah, Muhammad Abbas, Inayat Ur Rehman, Salar Muhammad, Hamdullah Hamdullah, Khang Wen Goh, Fazli Khuda, Amjad Khan, and et al. 2022. "Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design" Molecules 27, no. 13: 4005. https://doi.org/10.3390/molecules27134005
APA StyleNaureen, F., Shah, Y., Shah, S. I., Abbas, M., Rehman, I. U., Muhammad, S., Hamdullah, H., Goh, K. W., Khuda, F., Khan, A., Chan, S. Y., Mushtaq, M., & Ming, L. C. (2022). Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design. Molecules, 27(13), 4005. https://doi.org/10.3390/molecules27134005