Synthesis and Spectroscopic and Luminescent Properties of Er, Yb and Lu Complexes with Cyano-Substituted Phthalocyanine Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Tetrakis(dicyanophenoxyphenoxy)phthalocyaninates of Rare Earth Elements
2.2. Spectroscopic and Aggregation Properties of Complexes in Organic Media
2.3. Photophysical Properties of Complexes in Organic Media
3. Materials and Methods
3.1. Reagents and Equipment
3.2. Synthetic Part
General Route for Obtaining Complexes of Mono- Phthalocyaninates of Rare Earth Elements
3.3. Study of Spectroscopic and Aggregation Properties
3.4. Study of Fluorescent Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, H.; Fuh, R.C.A.; Li, J.; Corkan, L.A.; Lindsey, J.S. PhotochemCAD++: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998, 68, 141–142. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Guzik, M.; Lisiecki, R.; Sobczyk, M.; Jański, J.; Koll, A.; Boulon, G.; Legendziewicz, J. Photophysical properties and ab initio HF and DFT calculations of the structure and spectroscopy of axially chloro substituted Yb(III) mono-phthalocyanines in different systems. J. Lumin. 2018, 193, 84–89. [Google Scholar] [CrossRef]
- Lin, C.; Yang, J.; Li, S.; Gong, L.; Gao, Y.; Chen, Y.; Che, P.; Qi, D.; Li, J.; Bian, Y. Phenanthroline-fused unsymmetrical phthalocyanines chelating rhenium(I) tricarbonyl units: Synthesis, spectroscopy and electrochemical properties. Dye. Pigment. 2021, 195, 109716. [Google Scholar] [CrossRef]
- Bartlett, M.A.; Mark, K.; Sundermeyer, J. Synthesis, spectroscopy and singlet oxygen quantum yield of a non-aggregating hexadecamethyl-substituted phthalocyanine silicon(IV) derivative. Inorg. Chem. Commun. 2018, 98, 41–43. [Google Scholar] [CrossRef]
- Vashurin, A.S.; Tikhomirova, T.V.; Maizlish, V.E. Crystal solvates of zinc(II) tetra-4-[(n-hexyloxy)benzoylamino]phthalocyanine. Russ. J. Inorg. Chem. 2015, 60, 379–382. [Google Scholar] [CrossRef]
- Namgoong, J.W.; Kim, S.H.; Chung, S.W.; Kim, Y.H.; Kwak, M.S.; Kim, J.P. Aryloxy- and chloro-substituted zinc(II) phthalocyanine dyes: Synthesis, characterization, and application for reducing the thickness of color filters. Dye. Pigment. 2018, 154, 128–136. [Google Scholar] [CrossRef]
- Hakeim, O.A.; Abdelghaffar, F.; Haroun, A.A. UV-curable hyperbranched polyester acrylate encapsulation of phthalocyanine pigments for high performance synthetic fabrics printing. Dye. Pigment. 2020, 177, 108307. [Google Scholar] [CrossRef]
- Saadati Ardestani, N.; Sodeifian, G.; Sajadian, S.A. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): Experimental and modeling. Heliyon 2020, 6, e04947. [Google Scholar] [CrossRef]
- Azim Araghi, M.E.; Parandin, M. Optical, electrical, and gas sensing properties of chloroaluminium phthalocyanine thin film. Optik 2021, 240, 166762. [Google Scholar] [CrossRef]
- Li, B.; Cui, Z.; Han, Y.; Ding, J.; Jiang, Z.; Zhang, Y. Novel axially substituted lanthanum phthalocyanines: Synthesis, photophysical and nonlinear optical properties. Dye. Pigment. 2020, 179, 108407. [Google Scholar] [CrossRef]
- Wei, J.; Li, X.; Xiao, C.; Lu, F. IR absorption spectroscopic characteristics of peripherally substituted thiophenyl phthalocyanine in sandwich bis(phthalocyaninato) complexes. Vib. Spectrosc. 2017, 92, 105–110. [Google Scholar] [CrossRef]
- Reddy, P.Y.; Giribabu, L.; Lyness, C.; Snaith, H.J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J.-H.; Kalyanasundaram, K.; Grätzel, M.; et al. Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmetrical Zinc Phthalocyanine. Angew. Chem. 2007, 119, 377–380. [Google Scholar] [CrossRef]
- Kuzmina, E.A.; Dubinina, T.V.; Vasilevsky, P.N.; Saveliev, M.S.; Gerasimenko, A.Y.; Borisova, N.E.; Tomilova, L.G. Novel octabromo-substituted lanthanide(III) phthalocyanines—Prospective compounds for nonlinear optics. Dye. Pigment. 2021, 185, 108871. [Google Scholar] [CrossRef]
- Li, Z.; Gao, F.; Xiao, Z.; Wu, X.; Zuo, J.; Song, Y. Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: Effect of rare earth atom. Opt. Laser Technol. 2018, 103, 42–47. [Google Scholar] [CrossRef]
- Babailov, S.P.; Polovkova, M.A.; Kirakosyan, G.A.; Martynov, A.G.; Zapolotsky, E.N.; Gorbunova, Y.G. NMR thermosensing properties on binuclear triple-decker complexes of terbium(III) and dysprosium(III) with 15-crown-5-phthalocyanine. Sens. Actuators A Phys. 2021, 331, 112933–112944. [Google Scholar] [CrossRef]
- Smola, S.S.; Snurnikova, O.V.; Fadeyev, E.N.; Sinelshchikova, A.A.; Gorbunova, Y.G.; Lapkina, L.A.; Tsivadze, A.Y.; Rusakova, N.V. The First Example of Near-Infrared 4f Luminescence of Sandwich-Type Lanthanide Phthalocyaninates. Macroheterocycles 2012, 5, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Semenishyn, N.N.; Smola, S.S.; Rusakova, N.V.; Martynov, A.G.; Birin, K.P.; Gorbunova, Y.G.; Tsivadze, A.Y. Infrared 4f-luminescence of erbium(III) complexes with tetrapyrrole ligands. Macroheterocycles 2018, 11, 262–268. [Google Scholar] [CrossRef]
- Sinelshchikova, A.A.; Gorbunova, Y.G.; Lapkina, L.A.; Konstantinov, N.Y.; Tsivadze, A.Y. Erbium complexes with tetra-15-crown-5-phthalocyanine: Synthesis and spectroscopic study. Russ. J. Inorg. Chem. 2011, 56, 1370–1379. [Google Scholar] [CrossRef]
- Komedo, T.; Katoh, K.; Yamashita, M. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties. Prog. Surf. Sci. 2014, 89, 127–160. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, Y.; Ou, Z.; Jiang, J. Chemistry of sandwich tetrapyrrole rare earth complexes. In Handbook of Porphyrin Science; World Scientific Publishing Co.: Singapore, 2011; Volume 14, pp. 249–460. [Google Scholar]
- Oluwole, D.O.; Yagodin, A.V.; Mkhize, N.C.; Sekhosana, K.E.; Martynov, A.G.; Gorbunova, Y.G.; Tsivadze, A.Y.; Nyokong, T. First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots. Chem. A Eur. J. 2017, 23, 2820–2830. [Google Scholar] [CrossRef]
- De Saja, J.A.; Rodríguez-Méndez, M.L. Sensors based on double-decker rare earth phthalocyanines. Adv. Colloid Interface Sci. 2005, 116, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gurol, I.; Durmus, M.; Ahsen, V. Investigation of photophysical and photochemical properties of octa-substituted double-decker rare-earth metallophthalocyanine complexes. J. Porph. Phthal. 2012, 16, 907–916. [Google Scholar] [CrossRef]
- Pushkarev, V.E.; Tomilova, L.G.; Nemykin, V.N. Historic overview and new developments in synthetic methods for preparation of the rare-earth tetrapyrrolic complexes. Coord. Chem. Rev. 2016, 319, 110–179. [Google Scholar] [CrossRef] [Green Version]
- Belogorokhov, I.A.; Dronov, M.A.; Tikhonov, E.V.; Pushkarev, V.E.; Tomilova, L.G.; Khokhlov, D.R. Frequency dependences of the imaginary and real parts of the permittivity of organic semiconductors based on butyl-substituted erbium monophthalocyanine molecules. JETP Lett. 2010, 91, 607–610. [Google Scholar] [CrossRef]
- Maleev, A.A.; Pushkarev, A.P.; Ilichev, V.A.; Lopatin, M.A.; Samsonov, M.A.; Fukin, G.K.; Pakhomov, G.L.; Travkin, V.V.; Grishin, I.D.; Bochkarev, M.N. Monophthalocyanine complexes of samarium and terbium with axial ligands: Synthesis, structure and optoelectronic properties. J. Rare Earths 2014, 32, 1101–1108. [Google Scholar] [CrossRef]
- Claessens, C.G.; Hahn, U.; Torres, T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec. 2008, 8, 75–97. [Google Scholar] [CrossRef]
- Ng, D.K.P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. Chem. Soc. Rev. 1997, 26, 433–442. [Google Scholar] [CrossRef]
- Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D.P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na) phthalocyaninato and porphyrinato rare earth complexes. Coord. Chem. Rev. 2006, 250, 424–448. [Google Scholar] [CrossRef]
- Snow, A.W. Phthalocyanine Aggregation. In The Porphyrin Handbook: Phthalocyanines: Properties and Materials; Elsevier: Amsterdam, The Netherlands, 2003; Volume 17, p. 129. [Google Scholar]
- Schutte, W.J.; Sluyters-Rehbach, M.; Sluyters, J.H. Aggregation of an Octasubstituted Phthalocyanine in Dodecane Solution. J. Phys. Chem. 1993, 97, 6069–6073. [Google Scholar] [CrossRef]
- Koifman, O.I.; Hanack, M.; Syrbu, S.A.; Lyubimtsev, A.V. Phthalocyanine conjugates with carbohydrates: Synthesis and aggregation in aqueous solutions. Rus. Chem. Bull. 2013, 62, 896–917. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, F.; Li, Z.; Huang, L.; Tang, Y.; Zhang, F.; Tung, C.H. A Novel Self-Aggregates of Phthalocyanine Based on Zn-O Coordination. Chem. Lett. 2007, 36, 108–109. [Google Scholar] [CrossRef]
- Tolbin, A.Y.; Pushkarev, V.E.; Sedova, M.V.; Maklakov, S.S.; Tomilova, L.G. Aggregation of Slipped-Cofacial Phthalocyanine J-Type Dimers: Spectroscopic and AFM Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.J.; Wood, S.R.; Vernon, D.I.; Griffiths, J.; Dubbelman, T.M.A.R.; Brown, S.B. The characterization of three substituted zinc phthalocyanines of differing charge for use in photodynamic therapy. A comparative study of their aggregation and photosensitising ability in relation to mTHPC and polyhaematoporphyrin. J. Photochem. Photobiol. B Biol. 1998, 45, 28–35. [Google Scholar] [CrossRef]
- Tasso, T.T.; Yamasaki, Y.; Furuyama, T.; Kobayashi, N. An Exemplary Relationship between the Extent of Cofacial Aggregation and Fluorescence Quantum Yield as Exhibited by Quaternized Amphiphilic Phthalocyanines. Dalton Trans. 2014, 43, 5886–5892. [Google Scholar] [CrossRef] [PubMed]
- Gorduk, S. Ferulic Acid Substituted Zn(II) Phthalocyanine: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties. J. Turk. Chem. Soc. A Chem. 2018, 5, 903–918. [Google Scholar] [CrossRef]
- Kadish, K.M.; Bottomley, L.A.; Cheng, J.S. Electrochemical Characterization of Iron(II) and Iron(I) Phthalocyanine-Amine Derivatives. J. Am. Chem. Soc. 1978, 100, 2731–2737. [Google Scholar] [CrossRef]
- Furuyama, T.; Maeda, K.; Maeda, H.; Segi, M. Chemoselective Synthesis of Aryloxy-Substituted Phthalocyanines. J. Org. Chem. 2019, 84, 14306–14312. [Google Scholar] [CrossRef]
- Shankar, R.; Jha, N.; Vasudevan, P. Synthesis of soluble phthalocyanines and study of their aggregation behavior in solution. Indian J. Chem. Sect. A 1993, 32, 1029–1033. [Google Scholar]
- Nyokong, T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev. 2007, 251, 1707–1722. [Google Scholar] [CrossRef]
- O’Shea, D.F.; Miller, M.A.; Matsueda, H.; Lindsey, J.S. Investigation of the Scope of Heterogeneous and Homogeneous Procedures for Preparing Magnesium Chelates of Porphyrins, Hydroporphyrins, and Phthalocyanines. Inorg. Chem. 1996, 35, 7325–7338. [Google Scholar] [CrossRef]
- Durmuş, M.; Nyokong, T. Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives. Tetrahedron 2007, 63, 1385–1394. [Google Scholar] [CrossRef]
- Novakova, V.; Zimcik, P.; Miletin, M.; Vůjtěch, P.; Franzová, Š. The synthesis, photochemical and photophysical properties of zinc aryloxy- and alkyloxy azaphthalocyanines. Dye. Pigment. 2010, 87, 173–179. [Google Scholar] [CrossRef]
- Erzunov, D.A.; Vashurin, A.S.; Koifman, O.I. Synthesis and spectral properties of isomers of cobalt tetrakis (dicyanophenoxy) phthalocyaninate. Russ. Chem. Bull. 2018, 67, 1–3. [Google Scholar] [CrossRef]
- Vashurin, A.; Erzunov, D.; Kazaryan, K.; Tonkova, S.; Tikhomirova, T.; Filippova, A.; Koifman, O. Synthesis, catalytic, spectroscopic, fluorescent and coordination properties of dicyanophenoxy-substituted phthalocyaninates of d-metals. Dye. Pigment. 2020, 174, 108018. [Google Scholar] [CrossRef]
- Erzunov, D.A.; Botnar, A.A.; Domareva, N.P.; Tikhomirova, T.V.; Vashurin, A.S. Synthesis, spectroscopic properties and redox behavior kinetics of rare-earth bistetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato metal complexes with Er, Lu and Yb. Molecules 2021, 26, 2181. [Google Scholar] [CrossRef] [PubMed]
- Gorbunova, Y.G.; Martynov, A.G.; Birin, K.P.; Tsivadze, A.Y. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russ. J. Inorg. Chem. 2021, 66, 202–216. [Google Scholar] [CrossRef]
- Lebedeva, N.S.; Kumeev, R.S.; Al’per, G.A.; Parfenyuk, E.V.; Vashurin, A.S.; Tararykina, T.V. Dimerization and coordination properties of zinc(II)tetra-4- alkoxybenzoyloxiphthalocyanine in relation to DABCO in o-xylene and chloroform. J. Solution Chem. 2007, 36, 793–801. [Google Scholar] [CrossRef]
- Filippova, A.A.; Kerner, A.A.; Znoiko, S.A.; Tikhomirova, T.V.; Vashurin, A.S. Aggregation and Molecular Complexation of Bifunctionally Substituted Cobalt Phthalocyaninates in Aqueous Media. Russ. J. Inorg. Chem. 2020, 65, 247–254. [Google Scholar] [CrossRef]
Compound | Qmax, nm (lgε) | ||
---|---|---|---|
CHCl3 | Acetone | THF | |
4 | 685 (4.34) | 677 (4.29) | 679 (4.33) |
5 | 687 (4.89) | 677 (4.33) | 680 (4.41) |
6 | 688 (4.32) | 678 (4.27) | 682 (4.28) |
7 | 687 (4.40) | 678 (4.30) | 681 (4.37) |
8 | 689 (4.29) | 679 (4.26) | 682 (4.25) |
9 | 690 (4.38) | 680 (4.30) | 682 (4.33) |
Compound | CHCl3 | Acetone | THF | |||
---|---|---|---|---|---|---|
Φx | τf, [ns] | Φx | τf, [ns] | Φx | τf, [ns] | |
4 | 0.19 | 6.01 | 0.17 | 5.92 | 0.15 | 5.79 |
5 | 0.18 | 5.93 | 0.15 | 5.78 | 0.12 | 5.66 |
6 | 0.09 | 5.84 | 0.08 | 5.71 | 0.06 | 5.60 |
7 | 0.17 | 6.00 | 0.16 | 5.90 | 0.13 | 5.79 |
8 | 0.17 | 5.93 | 0.15 | 5.77 | 0.11 | 5.67 |
9 | 0.06 | 5.84 | 0.06 | 5.71 | 0.04 | 5.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erzunov, D.; Sarvin, I.; Belikova, A.; Vashurin, A. Synthesis and Spectroscopic and Luminescent Properties of Er, Yb and Lu Complexes with Cyano-Substituted Phthalocyanine Ligands. Molecules 2022, 27, 4050. https://doi.org/10.3390/molecules27134050
Erzunov D, Sarvin I, Belikova A, Vashurin A. Synthesis and Spectroscopic and Luminescent Properties of Er, Yb and Lu Complexes with Cyano-Substituted Phthalocyanine Ligands. Molecules. 2022; 27(13):4050. https://doi.org/10.3390/molecules27134050
Chicago/Turabian StyleErzunov, Dmitrii, Ilya Sarvin, Anastasia Belikova, and Arthur Vashurin. 2022. "Synthesis and Spectroscopic and Luminescent Properties of Er, Yb and Lu Complexes with Cyano-Substituted Phthalocyanine Ligands" Molecules 27, no. 13: 4050. https://doi.org/10.3390/molecules27134050
APA StyleErzunov, D., Sarvin, I., Belikova, A., & Vashurin, A. (2022). Synthesis and Spectroscopic and Luminescent Properties of Er, Yb and Lu Complexes with Cyano-Substituted Phthalocyanine Ligands. Molecules, 27(13), 4050. https://doi.org/10.3390/molecules27134050